The Fortran Simulation Translator 4.16

plotting, sensitivity analysis, events and measured variables

C. Rappoldt, D.W.G. van Kraalingen

\

-
lllll’:‘lllu

e, =1

EcoCurves

December 2021 EcoCurves rapport 32, ISSN 1872-5449

This document has been created in December 2021

The most recent version of this manual is available from
www.ecocurves.nl/Support/FST/FSTadditions.pdf

Part of the FSTwin installation is the FST translator which
is provided by EcoCurves BV "as is” and without warranties.
EcoCurves BV cannot accept any responsibility for errors leading
to incorrect simulation results.

FSTwin is compatible with the GFortran compiler and with
Ghostscript for viewing plots. The use of these third party pro-
grams requires that you comply with the terms and conditions for
obtaining a valid license. This is solely your responsibility and
the use of FST does not alter this in any way.

The FSTwin installation is accompanied by two separate in-
stallers, which can optionally be used to perform a standard in-
stallation of GFortran and/or Ghostscript. These are programs
under the GNU General Public License, however, and you must
comply with the terms and conditions of this license if you use
GFortran and/or Ghostscript in combination with FST. This also
applies if you use an existing installation of these programs or if
you download newer versions.

www.ecocurves.nl/Support/FST/FSTadditions.pdf

The Fortran Simulation Translator 4.16

The Fortran Simulation Translator 4.16

plotting, sensitivity analysis, events and measured variables

C. Rappoldt!, D.W.G. van Kraalingen?

'EcoCurves BV, Kamperfoelieweg 17, 9753 ER Haren, Nederland
E-mail: kees.rappoldt@ecocurves.nl

2Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, Nederland
E-mail: daniel.vankraalingen@wur.nl

EcoCurves rapport 32

EcoCurves BV, Haren, 2021

REFERAAT

C. Rappoldt, D.W.G. van Kraalingen, 2021. The Fortran Simulation Translator 4.16 ;

plotting, sensitivity analysis, events and measured variables. EcoCurves rapport 32,
EcoCurves BV, Haren. 104 blz.

This updated manual describes the changes and additions made in FST 3 and FST 4, the
plotting features, measured data input, the sensitivity statement and events, all introduced
by means of example programs. In this latest edition for the FST translator 4.16 there is
are new chapters for the sensitivity statement and for the plotting style. Furthermore the
manual begins with a chapter ”For those who dislike manuals”, where many of the added
features and briefly explained by means of a single example program.

Keywords: model, simulation, language, plotting, event, crop growth

This document has been created in December 2021

The most recent version of this manual is available from

www.ecocurves.nl/Support/FST/FSTadditions.pdf

(©) 2021 C. Rappoldt, EcoCurves BV
Kamperfoelieweg 17, 9753 ER Haren (gn), Nederland
Tel.: (050) 5370392; e-mail: kees.rappoldt@ecocurves.nl

Voorplaat: “Greenhouse”

This manual can be distributed with the FST translator and/or FSTwin as a complete
and unmodified PDF file. Example models can be used for educational purposes or as a
starting point for further modelling. Copying text or figures from this document for any
other purpose is prohibited without prior permission of EcoCurves BV.

This document has been created using the IXTEX typesetting system.

[EcoCurves BV December 2021]

www.ecocurves.nl/Support/FST/FSTadditions.pdf

Contents

List of Figures

List of Example programs

List of Tables

Preface

1 Introduction

1.1
1.2
1.3

Fortran compilers, Ghostscript,
Legal issues e
This manual L Lo

2 For those who dislike manuals

2.1

2.2

2.3

An example model in 39 statements L.
2.1.1 Parameters and simulated time
2.1.2 Sensitivity analysis oo 0oL
2.1.3 Constants and initial calculations
Text of example model L Lo
2.2.1 Dynamic calculations o oL
2.2.2 7"Measuring” the amplitude
2.2.3 Plotting theresult
Some thoughts about thismodel
2.3.1 About SENSITIVITY runs
2.3.2 About EVENT sections
2.3.3 About "measuring” the simulated amplitude
2.3.4 About the CURVE statements
2.3.5 About the model itself: Resonance

3 Sensitivity runs

3.1
3.2

The sensitivity statement
Sensitivity plots

4 Time and state events

4.1
4.2
4.3

4.4
4.5
4.6

What for are Setting variables?,
Defining Setting variables L L.
Eventsstep by stepo
4.3.1 Timeevent
4.3.2 Stateevent Lo
Example model with Sensitivity and two Events
Event sections: therules
Reaching a state event oL
4.6.1 Generalmode

4.6.2 FSEmode. e

4.6.3 Scaling the event function
4.6.4 Missed stateevents Lo
4.7 Simultaneous events L Lo
Plotting in FST
5.1 Why plotting in FST? oL
5.2 Plotting course by example oL
52.1 A quickplot
5.2.2 More detailed CURVE statements
52.3 Asharedaxis
5.2.4 Two separate axeso
525 Asecondplot
5.2.6 Reruns and plotting
Awarningo
5.2.7 Combining runs in a sensitivity plot
5.2.8 More on sensitivity plots oL
5.2.9 Changing the time axis
5.2.10 Plotting calendar time
Calendar connection
Default calendar time axis
Changing the calendar time axis
Tuning the hour, day, week, month or year axis
Some more examples L
5.2.11 Plotting simulated time
5.3 Howitworks
5.3.1 Overview
5.3.2 The CURVE statement
533 Userdefinedaxes
5.3.4 Which data is actually plotted?
Therule
Events
Example. oo
Exceptions to therule,
5.4 Calendar time
5.4.1 Another calendar time axis example
5.5 Plotting array variables oL
5.6 Technical details
5.6.1 Processing EPSfiles 0L
5.6.2 Removing date, model name and FST version ”by hand”
5.6.3 Limitations L oo
The plotting style file
6.1 Plotsize
6.2 Thin lines at label positions
6.3 Plot title and legend
6.4 Footer e
Calendar connection
7.1 Introduction e
7.2 Connecting the calendar
7.3 Calendar connection with WEATHER
7.4 The available calendar variables

7.5 Referring to StartYear, StartDOY and OneDay

8 Measured variables
8.1 Introduction.
8.2 Example model with measured data
83 Theinput file
8.4 Getting the measured variables
8.5 Example from practice oL

9 Other changes
9.1 Syntax
9.2 New intrinsic functions
9.2.1 The intrinsic function SimulationTime
9.2.2 The intrinsic functions SUM and DOT_PRODUCT
9.2.3 Other new intrinsic functions
9.3 String arguments of subroutines and functions
9.4 User defined functions
9.5 Appended Fortran subprograms L.
9.5.1 Number of subroutine and function arguments
9.5.2 What does the translator do with Fortran?
9.5.3 The Fixed/Free form
9.6 Minor changes

Bibliography

Appendix A Curve types

Appendix B Marker types

Appendix C Curve and Marker colors
Appendix D Time label strings

Appendix E FST version History

77
77
77
78
80
81

83
83
84
84
84
85
85
85
86
87
87
88
88

89
93
94
96
97

99

List of Figures

2.1
2.2

4.1

5.1
5.2
9.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18

8.1
8.2
Al
B.1
C.1

Sensitivity plot created by the example model in section 2.2
Approaching stationary oscillations

An example with events and an automated sensitivity analysis

Plot created by adding a single CURVE statement to the model . . .
Example plot with two default y-axes
Example plot with a shared axis
Two user-defined y-axes
A plot with a user-defined name
State space plot of the example competition model
Timeplot for four runs oL
State space plot for four runs
Combining runs in a single plot
Four sensitivity plots for 30 runs
Plot with default calendar time axis
Examples of calendar axis time labels
Fine-tuning the calendar time axis
Plotting simulated time
A plot with two vertical axes
Dynamic variables as curves and an event variable as points
The plot of Figure 5.16, now after making a calendar connection
The plot of Figure 5.17, now using a special calendar time axis

Measured data are plotted oL
Plot of simulated and measured variables: example from calculations
by EcoCurves and Photosyntax

Codes for curve type CURTYP
Codes for marker type MARTYP

Color names to be used for CurCol and MarCol

Example programs

2.2 Example model with event, sensitivity analysis and PDF plots. . . . 16
4.1 Example model with events 29
4.2 A logfile report on a state event iteration 33
5.1 Basic plotting example with a single CURVE statement 38
5.2 Plotting example with two variables 39
5.3 Two variables plotted on the same axis. 41
5.4 A plotting section for two plots L. 44
5.5 Plotting withreruns o oL oL 45
5.6 Sensitivity analysis Lo oL L 49
5.7 With calendar connection and calendar time axis 53
5.8 Plotting simulated time 0 Lo o7
5.9 Plotting example with two user defined axes 60
5.10 Dynamic variables and an event variable in the same plot 63
5.11 Defining a calendar axis 65
6.1 File PlotPreferences.dat with style options 70
8.1 Example model using measured data 79
8.2 Measured data in combination with plotting 81

List of Tables

8.1 Example of measured data used in FST model 78
D.1 Examples of calendar time labels 97
D.2 Calendar time label attributes 98

Preface

This manual describes the changes and additions made in FST 3 and FST 4, the
plotting features, measured data input, the sensitivity statement and events, all
introduced by means of example programs. In this latest edition there are new
chapters for the sensitivity statement and for the plotting style. Furthermore the
manual begins with a short chapter ”"For those who dislike manuals”, in which
many of the added features and briefly explained by means of a single example
program.

The FST translator has been updated to version 4.16, a 64 bits application with
minor changes, bug fixes and a few increased capacity settings. The updated
and now fully 64 bits graphical user interface FSTwin (by Daniel van Kraalingen)
supports GFortran for running the translated model and Ghostscript for viewing
results. This update has been supported financially by the Plant Science group of
Wageningen University.

The Fortran code generated by the translator is also compatible with the latest
Intel Fortran compiler (part of the free oneAPI HPC package). For this compiler
and for working under OSX or Linux there is no graphical user interface available,
however. On request, the translator application, the object libraries required and
a batch file for running FST models can be obtained from the authors.

Additions to FST have emerged from practical needs during the development and
application of large models by EcoCurves, Plant-Dynamics and Photosyntax. Ex-
amples are time and state events, plotting statements and access to measured data.
A very efficient addition is the sensitivity statement which allows an automated
sensitivity analysis on a model parameter.

We thank Ad Schapendonk, Peter Leffelaar and XinYou Yin for their continuous
enthusiasm.

Haren / Wageningen, February 2013, December 2021
Kees Rappoldt, Daniel van Kraalingen

11

CHAPTER 1

Introduction

FST is an easily learned simulation language which is useful in especially the de-
velopment of crop growth models. Important models like SUCROS (Goudriaan
& van Laar, 1994), Lintul, Gecros (Yin & van Laar, 2005) and ORYZA2000, the
IRRI! rice model (Bouman et al., 2001) have been written in FST. These models
are used over the world by many agronomists, not all of them having affinity with
the underlying numerics.

The FST translator translates a completely specified simulation model into a
Fortran-90 program with datafiles. These datafiles contain the values for the model
parameters and the Fortran program contains an input section for reading the
model parameters from file.

1.1 Fortran compilers, Ghostscript

The FST translator? translates a model into Fortran-90 source code with data files.
Actually running a model requires also a Fortran compiler. The translator produces
standard Fortran which can be used in combination with any Fortran compilers on
any platform. For the combination of Windows and GFortran compiler there is a
graphical user interface FSTwin available. For OSX and Unix in combination with
the (now free) Intel Fortran compiler, the required files are available on request
(kees.rappoldt@ecocurves.nl).

The GFortran compiler is part of the ”Minimalist GNU for Windows” or MinGW
compiler set (see http://www.mingw.org/wiki/Getting_Started). The most re-
cent version of this compiler can be found at https://sourceforge.net/projects/
mingw-w64/files/.

Ghostscript (e.g. https://github.com/ArtifexSoftware/ghostpdl-downloads/
releases/download/gs952/gs952u64 . exe) converts postscript and EPS files into
bitmapped formats or PDF. It is used by the FSTwin to convert the EPS files
produced by the model into bitmaps in order to visualise the graphs on screen.

!International Rice Research Institute.
2File FST.exe in the installed FSTwin directory

13

http://www.mingw.org/wiki/Getting_Started
https://sourceforge.net/projects/mingw-w64/files/
https://sourceforge.net/projects/mingw-w64/files/
https://github.com/ArtifexSoftware/ghostpdl-downloads/releases/download/gs952/gs952w64.exe
https://github.com/ArtifexSoftware/ghostpdl-downloads/releases/download/gs952/gs952w64.exe

14

Chapter 1. Introduction

1.2 Legal issues

Part of the FSTwin installation is the FST translator which is provided by EcoCurves BV

7as is” and without warranties. EcoCurves BV cannot accept any responsibility
for errors leading to incorrect simulation results.

FSTwin is compatible with GFortran and with Ghostscript for viewing plots. The
use of these third party programs requires that you comply with the terms and
conditions for obtaining a valid license. This is solely your responsibility and the
use of FST does not alter this in any way.

The FSTwin installation is accompanied by two separate installers, which can op-
tionally be used to perform a standard installation of GFortran and/or Ghostscript.
These are programs under the GNU General Public License, however, and you must
comply with the terms and conditions of this license if you use GFortran and/or
Ghostscript in combination with FST. This also applies if you use an existing in-
stallation of these programs or if you download newer versions.

1.3 This manual

Chapter 2 for those who dislike manuals is an efficient introduction to the newer
elements of FST. It contains a single example model with an event, plotting state-
ments and a sensitivity analysis.

Chapter 3 describes sensitivity runs. With just a single statement a series of sim-
ulation runs is made with a varying parameter value.

Chapter 4 contains a description of the time and state events. A time event is a
change in the system which takes place at a specified moment in time. Something is
added to the system, for instance, a process is activated or the value of a parameter
suddenly changes. A state event allows the same kind of sudden changes but it
does not happen at a preset moment in time, but whenever a certain condition is
met. Harvest takes place, for instance, when a crop reaches a certain stage.

Chapter 5 describes the FST plotting statements. These statements produce pub-
lication quality plots, simply by running the model (see for details section 5.6.1 at
page 66). Chapter 8 describes access to external (measured) data. These are the
features added to version 4 of FST.

Chapter 7 contains a description of the calendar connection in the GENERAL
translation mode of FST. Some other changes are documented in Chapter 9. In
appendices some reference material has been collected, including a brief version
history with bug fixes.

This manual® explains the additions made in FST 3 and FST 4. A more complete
description of the structure of an FST model and of all basic FST statements can be
found in the original manual Rappoldt & van Kraalingen (1996), which is available
as www.ecocurves.nl/Support/FST/FSTmanual (1996) . pdf.

3A recent version of this manual is available from www.ecocurves.nl/Support/FST/
FSTadditions.pdf.

www.ecocurves.nl/Support/FST/FSTmanual(1996).pdf
www.ecocurves.nl/Support/FST/FSTadditions.pdf
www.ecocurves.nl/Support/FST/FSTadditions.pdf

CHAPTER 2

For those who dislike manuals

The example model at the next two pages contains a sensitivity statement, an event
section and plotting statements. In just a single example you find out about these
additions to FST, each of them covered more fully in a subsequent chapter.

The model describes a mass going up and down at the end of a spring. The oscillator
is called harmonic since the force of the spring is proportional to the deviation from
equilibrium position. There is friction, which makes it a damped oscillator, and a
periodic force is applied, which makes it a forced oscillator and not a free one.

2.1 An example model in 39 statements

Statement 1 is the TITLE of the model. There are no subroutines to be declared
in DEFINE_CALL statements, so in statement 2 the actual Model begins.

2.1.1 Parameters and simulated time

Statements 3 to 7 define the parameters mass, spring constant, friction constant
and the period and amplitude of the force applied. Note that the comment text
behind each statement describes the parameter and its unit.

Statement 8 means that the movement is simulated over 100s. Statement 9 specifies
the integration method, fourth-th order Runge-Kutta with error control with an
initial time step of 0.01s, defined by Delt in statement 8.

2.1.2 Sensitivity analysis

The sensitivity statement 10 means that 100 model runs have to be made for equally
spaced values of the parameter PERIOD between 1.0 and 20.0.

2.1.3 Constants and initial calculations

Statements 11 and 12 define constants used further down. Statement 14 in the
INITIAL section calculates the angular frequency of the applied force.

15

Chapter 2. For those who dislike manuals

16

potasd 3seT LNAAL
Uo3tTAs ,poTaed 3seT, FO onTeA TeITUuT j 0°0 = US3TAS DNILLIS

potaad o3 pejerex Aousmbexy sernSue | OIY¥Ad / Id*0°C = VOHIAWO

TYILINI
seTqeTIeA 94e3s TTe I0F POSN onTeA TeTITUl | 0°0 = 0¥dZ NOONI
99Z6STHT € = Id INVISNOD

00T=sunyygiequmy ¢ Q- 0g=o3ueypud ¢ O j=o3ueyurleg ¢ qOIYIJd=Surdrep AIIATLISNAS
SUNISI oyl Sojersusd STY] |

¢ATHAYY =¥IATHA TVYINID \NOILVISNVYL

T0°0 = LTAA ¢ 0°00T=WIINIA ¢ O 0=FWILLS HAWIL

SUOT4eTTIOoso Lxeuotraeas yoeal 03 Juol ATIUSTOTIINS poried SwWI3 ® ISAO0 UOTFRISIUT SNONUTIUOD |
oox03 Sutatap o epnatidwe [N] i O'T = 04 YALINVHVL

I09eTTTOSO UO 90I0J TePTOSNUTS TeuIsdxe Jo potrad [s] i 0°08 = AOI¥Ad ¥ALANYHV

£3150TeA puE ©0I0F JO OTIRI :JUELSUOD UOTAOTIAF [[-W SN] | $°0 = 4 YALANYEYd

X jusweoeTdsTp pue 8510 OT)SeTS® JO oTqeI ¢ jueqsuod Sutads [[-w N] § O'T = ¥ YALANTHYd
UOTIRISTOOO® PUB 95I0F JO OTJeI ¢ IO0QRTTTOSO OTuUoOwWIRY JOo ssew [3] j O0°'T = SSVW YHALAWNVIVd
sioqewered |

TAA0NW

‘queA® 9WT] ® JO suesuw Aq ,u0 poyd3TMS, ST Sutanses| "WILNIJ ©IoFeq potxed asel oyz Juranp i
epnattdue oyj ,Sutansesu, pue juswesow oUY3 Surjernurs Agq peleINOTED ST UOTQRTTIOSO oYl Fo opnarrdue oyl j

*9OURUOSSI POTTRD ST STIY] °'SonTes o3IeT soyoesax opnitTdwe oya ‘porisd Teinjeu S,I03eTTIOSO 8Y3 01 OSOTD ST |
potxed Teurelxs oyl yI ‘Latoorea o3 Teuoriiedoid 80I0F UOTAOTII ® JOo suesw Aq pedwep ST IOIRTTIOSO |

oYl "(0I¥Ad portxed UITM ©0I0F TRPTIOSNUIS TRUISIX® Ue AQ QUAWSAOW O3UT 3Y3SNOoIq ST I0JRTTIOSO OTUOWIRY Y |
JojeTTTosg otuouxey pedueq pedIod TILIL

9700
ST00

7100
€T00

Z¢100
TT00

0T00
6000
8000
1,000
9000
G000
7000
€000

2000

T000

‘oouRUOSaY/TNTM /310 eTpadIfTM - US//:sd1]1 I0 I04RTTTIOSO OTUOWIRY S TdUTS#I04eTTIOSO O TUOWIRY /TN TM /310

[epouw ojdurexs jo Jxaf,

‘etpadTqTm-ue//:sd1qY 998 J[OSII [OPOW O} UO PUNOISYOR(Q SI0W IO " [,SA [RUISLIO o) 01 SUOIIPPR [RISAJS SUTUIRIUO0D [opowl ojdurexs oy} ST oIoH

¢'¢G

https://en.wikipedia.org/wiki/Harmonic_oscillator#Simple_harmonic_oscillator
https://en.wikipedia.org/wiki/Harmonic_oscillator#Simple_harmonic_oscillator
https://en.wikipedia.org/wiki/Resonance

17

2.2. Text of example model

(pox,=Tooxey ¢ g=dLaxel ¢ gQ'Q=ZISIRK ‘¢ POIRTNWIS, pusSeT ¢

copnatTdwe 0°0 T°0 G0 T°€ 0°0¢

anNd

TduypeleTnuWIS=4yAA ¢ QOIHAd=HVAX TAHUND
z=odfloweI ¢ 00URUOSSY,=dWRIJ ¢ Q0 P=PTMIN) ¢ Teorafreue, = pusloT ¢ TduyTeoT1ATRUY=HUVAA ‘¢ QOTHAJI=HVAX FTAHYND
q0Td £3TA3TSues sueew g=odflowerq i
Tduypesernutg ‘Tduyreotiireuy < xedwy SIXY \NDISSY

= xeduy

SIXV \INIAIQ

SOnTeA L TRUTWISY YITM ONTeA ¥ Se (QOIYHd IeTeoS TeI3TuTr oyl Suriurquod ‘suni TTe IoF 30T7d A3TAT}ISUSS |

UOTINTOS TeOTIATRUR | (Takd % CH*VDAWQ + Ckk (CHAVOANO-SSYN/Y) * Ta+SSYW)INDS / 04
i 0'% / eouelsIUpPoAO)

epnatrdwe oyl 03 ©SOTO ©9 PINOYS ©OURLSTUPOAON JO Xo3Ienb e

0T 02 39S ST UD3ITMS UYOTYM 3B 3JUSAS BWIY ,POTISd 3SeT, 99Ul I93Fe ST UYOTIUM
aaT3TSod ST A93INTOSQy SB UOOS SB 0J9Z WOIF SOSBOIOUT 9OURLISTPOAOH

i (A)SgY * U23TAS
i (A°INTOSqY ‘0¥dAZ) TYDHINI

T

duyreotaLTRUY
TduypeeTnurg
TVNIWYAL

A®3InTOSqy
90URLST(POAOK

£a100TeA @QnTOSqe oYl JO TeISS]qUT oYl ST POAOW SOURASI(C |

ssel| / (92104 Te10L) = UOTIRISTODDY :MBT S UOIMON |
£a100T9A 07 TeRUOT3X0doxd ST UWOTIOTIAI |

0=¥ 2 uotatsod untaqrTtnbe oyl 03 pe3deITP OTISRTT |
opnatTdue pue qQINAd poqriosexd sey perrdde ©0I0I TRUILDIXT |

SSYW / ©2I04Te30L

(IWIL * ¥DAWO0)SOD * 04

S90JI0F SNOTJIRA 8Y3 JO WNS | UOTIDOTIJ - 90I040T3SeTd - odJ04potTddy =

‘1T wo Surloe §00X0F oU3 pue 300[q0 oYl JO SSew oUY3 WOIJ POIRTNOTRD ST

UOTJRISTODOR JO TRIZO3UT
A Jo 93ueyos Jo 93el oY1
La1o0TEA °Y3 JO TeRISS3UT

X J0 o3ueys Jo s3eI

oY1 ST £3100T0A
ST UOTJRISTODO®
oyq sT uotatsod
aya sT L3t1o0T8A

soTqeTIeA 99B3S oYl oI1e p K3t1ooTea pue uoratsod ¥ umtiqilrnbe woiy uotyeTASD

07

= UOT3RIDTOODY
A*x g = UOT3DTIg
X * 3 = ©0I040T3SeTq
= oo104pot1ddy
©0104TR10],
UOT1RISTOIDY
(A¥°0¥dZ) TUDINI = A
UOTJRISTODOY = AY
(X4°0¥dzZ) THOHINI = X
A = XH
OINVNAQ
INIAIANT

= UYDITMG OnTeAMSN

@0T¥4d - WILNIJ SWTLISITH
queA® oWTI] STYL Jo suesw £q UO peauiIngy ST UYDITMS STUYL WIINIJ ©X0Joq (OI¥dd ouo L1estoeid e

6€00
8€00
L€00

9€00
GE00

€00
€€00
2e00

T€00
0€00

6200
8200
1,200
9200
G200

7200
€200
¢coo0
1200
0200

6700
8T00
LT00

Chapter 2. For those who dislike manuals

2.2.1 Dynamic calculations

In the DYNAMIC section, statements 21 to 24 define the two state variables, the
deviation X from equilibrium position and the velocity V. The acceleration is the
rate of change RV of the velocity. The velocity is the rate of change RX of X.

In statements 25 to 28 the total force acting on the mass is calculated from which
statement 29 finds the acceleration by Newton’s second law.

This completes the actual model. The program sofar does 100 simulation runs with
different values of the parameter PERIOD, but it does not yet produce any output.

2.2.2 ”Measuring” the amplitude

The total distance moved during one period of a stable oscillation is 4 times the
amplitude. Hence, one way to ”measure” the amplitude is calculating the distance
moved during a simulated period. In order to calculate this distance, in either
positive or negative direction, we need to integrate the absolute velocity (statements
30 and 31). The integration is "switched on” by setting the variable Switch from
0.0 to 1.0 at precisely one PERIOD before FINTIM.

Switch is a so called SETTING variable (statement 15), which may change value at
an event. Statements 16 to 19 specify a time event which takes place one PERIOD
before FINTIM. At precisely this time the simulation is holded, the Switch is set
to 1.0, and the simulation resumes.

In the TERMINAL section (following statement 32) we divide MovedDistance by
4.0 in order to get an estimate of the stationary amplitude (statement 33). There
is also an analytical expression for it (statement 34).

2.2.3 Plotting the result

In statements 35 to 38 a plot is constructed with both the simulated and theoretical
amplitude as function of PERIOD. The two CURVE statements define an actual
curve for AnalyticalAmpl and a series of markers for Simulated Ampl.

The name of the plot is ”Resonance”, which is defined by the frame keyword in
statement 37. The second ”curve” in statement 38 is without frame keyword and
is therefore automatically added to the frame of statement 37. Figure 2.1 shows
the plot.

2.3 Some thoughts about this model

2.3.1 About SENSITIVITY runs

The use of a Sensitivity statement prevents the use of ordinary rerun sections fol-
lowing the END statement. Further, run 0 defined by (in this case) the PARAME-
TER PERIOD statement is omitted and only the runs specified by Sensitivity are
executed.

Sensitivity runs are not limited to model parameters. See Chapter 3 for details.

2.3. Some thoughts about this model

Resonance

o
o

o :
[6)]
o||||||||||||||||||||||||||||||

— analytical
- simulated

amplitude
- n n
(&) o (&)

—_
o

P P SR EPRP R
5 10 15 20
PERIOD

Figure 2.1. Sensitivity plot created by the example model in section 2.2 at page 16. For
values of PERIOD close to the natural period of the oscillator, the amplitude may become
very large, especially for low friction values.

o
o

2.3.2 About EVENT sections

In an event-endevent section state variables and settings may be change value by
means of one or more NewValue statements. The event in the above oscillator
model was used to switch on amplitude "measurement”, i.e. to do an observation
on model behaviour.

Events, however, may also be part of the simulated process. A harvest event, for
instance, means that the crop status is set back to some initial value for regrowth,
or the crop is removed altogether and the system waits for a seeding event, at a
sufficiently large soil water content for instance.

Periodic events are useful for simulating discrete processes. For instance, if pho-
tosynthesis is simulated in continuous time, a daily growth event at midnight can
be used to distribute the assimilates over the various plant parts. Such a periodic
event looks like

SETTING Counter=1.0
EVENT
FirstTime = Counter * OneDay
NewValue Counter = Counter + 1.0
! all periodic calculations

NextTime = Counter * (OneDay
END EVENT

Not just time events can be inserted in the simulation, but also state events. A state
event occurs if a calculated quantity crosses zero. When that happens the simula-
tion is halted, the event takes place and the simulation continues. For instance, if
the coordinate Y of an object crosses zero, we may want to reverse the velocity VY

20

Chapter 2. For those who dislike manuals

(a state variable). In an event section we must then insert ZeroConditionY and
NewValueVY=-VY. The simulated object then bounces back from the zero plane.

Chapter 4 contains a more complete description of events in FST.

2.3.3 About "measuring” the simulated amplitude

Our measurement of the simulated amplitude is based on the assumption that the
oscillation is stationary approaching FINTIM, i.e. that the oscillation repeats itself
and that any significant effect of the initial upswing has disappeared.

This clearly could be verified by repeating the calculations for various FINTIM
values. We could also simply make a plot of the position X. More interesting is to
plot the extreme positions reached during each simulated period by making use of
the fact that at the extremes the velocity crosses zero. The following state event
will do the job.

EVENT
ZeroCondition V

! note that the variable Xextreme is defined at event times only
Xextreme = X

! plot just the position Xextreme at event times, not all positions X.
CURVE YVAR=Xextreme ; Marsiz=0.05 ; Martyp=8 ; Marcol=’red’ ;

Frame=’Approaching stability’
ENDEVENT

The result is 100 plots like the one in Figure 2.2. Fach plot contains both the lower
and upper extremes reached during each oscillation period.

The plot demonstrates that the oscillation will approximately be stationary at
times approaching 100s. By adding "PRINT Xextreme” this may also be verified
from the actual values in the output file RES.DAT.

run 20: Approaching stability

1.5
10F S esss s sa s aeiasaa s s e e

0.5

0.0

Xextreme

-1.0

| LIRS L L L LB BB |

-1 5 I 1 I | I | I | L [
60 80 100

Time

o
N
o
N
o

Figure 2.2. The extreme positions during the oscillation simulated by the example model
in section 2.2 at page 16 with a state event added. The effect of the initial upswing quickly
disappears and the oscillation becomes stationary.

2.3. Some thoughts about this model

2.3.4 About the CURVE statements

The idea of the plot in Figure 2.1 is that the variables AnalyticalAmpl and Simu-
latedAmpl are both plotted relative to the same vertical axis. This has been realized
by defining an axis and assigning it to both variables. Without an ASSIGN_AXIS
statement, a separate axis would be drawn for each of the variables.

Finally a remark is made on the FrameType keyword in statement 37 in section 2.2.
Normally a pair of values (X,Y) is plotted only if both values were sent to output
at the same simulated TIME. For instance, an X value calculated in the INITTAL
and a Y value calculated in the TERMINAL section will never appear together as
an (X,Y) pair in a plot, with one exception.

By setting Frametype=2, the frame becomes a sensitivity plot and a single plot is
made with results obtained in multiple runs. Then, if the XVAR variable and the
Y VAR variable of a CURVE statement occur just once in the output for each run,
the pairs (X,Y) are plotted in a single frame. This also holds for array variables
which may lead to a series a curves, one for each run. These curves could be
stationary concentration profiles for instance.

Occurring just once usually means calculated in the INITIAL or TERMINAL sec-
tion of the model. But also variables calculated during a unique event occur once
and may be plotted in a sensitivity plot as function of a parameter value or so.

2.3.5 About the model itself: Resonance

Without friction and without external force, a harmonic oscillator with spring
constant k and mass m has a "natural period” Ty given by

m
To=2 —
0 ™ %

which means for the angular frequency wy

27 [k
wn = — = e
0 To m

With friction and an external periodic force with period T, the amplitude of the
oscillator reaches a maximum for 7' slightly above the natural period Ty of the
oscillator.

At https://en.wikipedia.org/wiki/Harmonic_oscillator#Simple_harmonic_
oscillator and https://en.wikipedia.org/wiki/Resonance more can be found
on harmonic oscillation and resonance. The maximum amplitude gets higher for
less friction. Also large elastic structures may resonate with an external force. This
can be dangerous.

https://en.wikipedia.org/wiki/Harmonic_oscillator#Simple_harmonic_oscillator
https://en.wikipedia.org/wiki/Harmonic_oscillator#Simple_harmonic_oscillator
https://en.wikipedia.org/wiki/Resonance

CHAPTER 3

Sensitivity runs

Sensitivity runs are made to explore the effect of a model parameter on a results
of the model. This requires a number of model runs from which then results are
combined in a single plot.

3.1 The sensitivity statement

The Sensitivity statement is meant to automate the creation of reruns in case you
just want to vary the value of an input value, usually a model parameter. In a
sensitivity statement you provide the parameter name, the value range and the
number of runs. FST then creates a series of runs, just as if a (long) list of rerun
sections would have been specified. A Sensitivity statement cannot be combined
with ordinary rerun sections.

Examples of sensitivity statements can be found in Listing 4.1 at page 29 and
in section 2.2 at page 16. A valid Sensitivity statement requires the following
keywords:

Varying or IntVarying The name of a real or integer variable for which
sensitivity runs should be made. The variables allowed are listed below.

BeginRange The value used in the first model run. If the sensitivity variable
is integer (keyword IntVarying is used), the start value is nint(BeginRange).
Hence, the nearest integer is used.

EndRange The value used in the last model run. If the sensitivity variable
is integer (keyword IntVarying is used), the end value is nint(EndRange).

NumberOfRuns The number of runs made. The parameter values are
equally spaced over [BeginRange,EndRange|. For an integer variable this
keyword is optional. If it is absent all integers between nint(BeginRange)
and nint(EndRange) are used.

LogRange Optional variable. For LogRange >= 1, the values used are
equally spaced on a logarithmic axis. A logarithmic spacing requires a positive
range. In case of an integer variable, selected with keyword IntVarying, the
logarithmic spacing wil be approximate.

Note that the execution of "run 0” is suppressed by a sensitivity statement’.

n case of ordinary reruns specified ”by hand” in reruns sections at the end of the FST model,
the first run executed is ”run 0” which is defined by all ”standard values” in the actual FST model.
After that the runs defined by the rerun sections are executed.

23

24 Chapter 3. Sensitivity runs

The variables which may occur as the Varying or IntVarying variable are

- Any scalar model parameter defined with a PARAMETER statement.
- The Timer variables STTIME, FINTIM, DELT, RGSEED.

- The Translation_General variables DELMAX, EPS, SEVTOL, StartYear,
StartDOY.

- The Weather control variable IYEAR.

- The Measurements variables CycleStYear, CycleStMonth, CycleStDay, Cy-
clePeriodInDays for cyclic use of measured data.

For integer variables (RGSEED, StartYear, IYEAR, CycleStYear, CycleStMonth,
CycleStDay and CyclePeriodInDays) the keyword IntVarying has to be used.

If you want to vary the initial value of a state variable, say Xini, you have to define
Xini=P, define P as a model parameter and then make sensitivity runs on P.

3.2 Sensitivity plots

A sensitivity plot combines results from all sensitivity runs in a single plot. A plot
becomes a sensitivity plot by adding ”FrameType=2" to a CURVE statement?.

Often the varying sensitivity variable, say P, has to be plotted as the X variable
(define CURVE Xvar=P ;. . .) and there is just a single value for each run. The Y
variable may be any result, as long as it is defined only once, in an initial, terminal
or event section.

The resulting plot then really shows the way in which Y depends on the varying
variable. Examples of such sensitivity plots can be found as Figure 2.1 at page 19,
and as Figurefig:Stone at page 30.

A more detailed description of sensitivity plots is given in section 5.2.7 starting
at page 46. Eamples are given there of combining entire curves in a single plot,
illustrating for instance the stability of an equilibrium (X,Y) position, starting at
various initial positions (Figure 5.9 at page 47).

2The default ”FrameType=1” defines an ordinary plot, with a separate frame for each run.

CHAPTER 4:

Time and state events

Events interrupt the normal simulation cycle of rate calculations and status up-
dates. The simulation is interrupted in order to change something in parameter
values or even the system status. After the event, the simulation continues, until
possibly another event takes place.

This chapter describes how events can be initiated and what sort of things can be
done during an event. There are two types of event. A time event simply takes
place at a prescribed moment in simulated time. When the event time is reached
the instructions belonging to the event are executed, a new event time may be set,
and the simulation continues.

State events are more complicated. A state event takes place when a certain con-
dition is reached, for instance if the state variable A reaches the value 5.0, a state
event must happen. In FST, this takes the form of a zero condition equal to A—5.0.
If this expression becomes (almost) zero, the event takes place. Then, after the
“event function” has moved away from zero and becomes zero once more, the event
takes place again.

Below a detailed description is given for both event types. At first, however, a new
type of variable needs to be introduced, the setting variable.

4.1 What for are Setting variables?

During events the value of a state variable may be changed. This represents a
sudden, instantaneous change which cannot be described in an ordinary rate of
change approach.

In practice we also want to apply sudden changes to parameter like variables or
control variables. A constant background temperature for instance, which acts as
a driving variable and suddenly changes. Or a control variable which is used to
switch between measured and calculated data. The problem with ordinary initial
variables is that they are sent to output only once and can never change value
anymore.

We therefore need a variable type which can be calculated initially, which can be
changed during events, and which is sent to dynamic "PRDEL output”. This is
what a setting variable is meant for.

25

Chapter 4. Time and state events

4.2 Defining Setting variables

A setting variable is defined by means of a SET statement in the following way

! example of the use of a setting variable
DECLARATIONS

INITIAL
SET CumulativeAmount = 0.0
SET NitrogenContent = 20.0 * MAX(Ncon, 2.0)

The setting variables CumulativeAmount and NitrogenContent are defined by
means of a SET statement. The second example shows that the SET statement
is a calculation. It is not a value assignment like PARAMETER, INCON or
CONSTANT statements, but expressions can be used as if the setting variable
was an ordinary calculated variable. Also array expressions can be used if the set-
ting variable is declared as an array before. In fact, any initially calculated variable
can be made into a setting variable by just putting the keyword SETTING (or just
SET) in front of the calculation!.

The following rules apply to setting variables (the keyword SETTING may be used
instead of SET).

e The SET or SETTING statement may occur only in the INITTIAL section.
The defining expression may refer to PARAMETERs, CONSTANTS, driver
supplied variables, or other initially calculated variables.

e A setting variable can be defined and used as any other initially calculated
variable. This implies that the calculations in SET statements are sorted
(put into computable order) together with the other initial calculations.

There are, however, three differences between a setting variable and an ordinary,
initially calculated variable.

1. If a setting variable is listed in a PRINT or CURVE statement, it is sent to
dynamic "PRDEL output”, together with the dynamic output variables.

2. A setting variable may change value during an event, like state variables.
3. A setting variable may act as a rate of change in an INTGRL statement.
In a model without events, setting variables are just initially calculated variables,

behaving like dynamic variables with respect to output, but with no other special
function.

4.3 Events step by step

4.3.1 Time event

An event section contains everything which has to be specified about an event,
when it takes place and what should happen. The simplest event section is

"With the exception of variables calculated in a subroutine call. If such a variable, say A, needs
to become a setting variable, a help variable (say Help) is first calculated in the subroutine and
then assigned to the setting variable by SET A = HELP.

4.3. Events step by step

! example of and event section
DYNAMIC

EVENT
FIRSTTIME StTime + 2.0
ENDEVENT

This initiates a time event at 2.0 time units after start time. During the event,
however, nothing happens, it just interrupts the simulation and no new event time
is specified. A periodic time event can be initiated by

! example of and event section
DYNAMIC
PARAMETER Period = 4.0

EVENT Periodic
FIRSTTIME StTime + 2.0
NEXTTIME Time + Period
ENDEVENT

This initiates a series of time events, beginning at 2.0 time units after start time
and returning every Period time units thereafter. Still, however, the event does not
change anything in the system status. Note that the event is named ”Periodic”, a
name which appears in the logfile and in messages.

In the next example this is different. Each time event changes the setting variable
named SetPoint and resets a state variable StateA to zero.

! example of event section
INCON Aini = 1.2345
INITIAL
SET SetPoint = 10.0
DYNAMIC
RateA = ...

StateA = INTGRL(Aini, RateA)
EVENT
FIRSTTIME StTime + 2.0
PARAMETER Period = 4.0
NEXTTIME Time + Period
NEWVALUE StateA = 0.0

NEWVALUE SetPoint = -SetPoint
ENDEVENT

The first NEWVALUE statement redefines the state variable StateA at zero.
SetPoint is redefined as the opposite of the old SetPoint. Hence, the variable
SetPoint is initially +10.0 and then, beginning at 2.0 time units after starttime, it
switches periodically between +10.0 to —10.0.

4.3.2 State event

State events do not contain a FIRSTTIME and NEXTTIME statement but instead
contain a ZEROCONDITION. The ZEROCONDITION statement contains an ex-
pression which triggers the event when it crosses zero (from positive to negative or
vice versa). This conditions is also called the ”event function”.

Suppose we want to change the SetPoint variable from the previous example each
time the integral StateA reaches the value TOP. This is done with

28

Chapter 4. Time and state events

! example of and event section
INCON Aini = 1.2345
INITIAL
SET SetPoint = 10.0

DYNAMIC
RateA = ...
StateA = INTGRL(Aini, RateA)

EVENT
ZEROCONDITION StateA - Top
PARAMETER Top = 200.0
NEWVALUE StateA = 0.0

NEWVALUE SetPoint = -SetPoint
ENDEVENT

Like in the previous example, the state StateA is the integral of RateA over time,
beginning at Aini. But now, if StateA ever reaches 200.0, the event takes place.
The setpoint changes into its opposite value and StateA is reset.

In Translation_General mode, a zero-crossing of the event function (the expression
in the ZeroCondition statement) is followed by an iterative search to the precise
time at which the event function reaches zero (see section 4.6.1). In FSE mode,
step size is fixed and the state event takes place immediately after detecting the
zero-crossing of the event function (see section 4.6.2).

Note that events not necessarily take place. In the last example, if StateA never
reaches the value Top, the event will never happen.

4.4 Example model with Sensitivity and two Events

Events are used in the first place to simulate sudden changes in the state variables
or in the environment of the simulated process. In a crop simulation, for instance,
there are many soil state or crop state dependent actions, like seeding, irrigation,
pesticide application or harvest.

A somewhat different use of events is "monitoring model behavior”. The event
does not actually interfere with the process but is used to observe when or under
which circumstances a specific "event” (literally) takes place.

As an example Listing 4.1 contains a complete model of the parabolic path of
a thrown away stone. The model does not just simulate the parabola, but also
observes the maximum height reached and the time at which the stone reaches the
ground again. Upon reaching the ground the simulation is halted.

The maximum height and the time at which this height is reached are ”measured”
as function of the initial vertical velocity with help of the Sensitivity statement.
This statement instructs FST to do 50 runs with different values of parameter
Initial VY. The observed dependence is shown in a sensitivity plot (FrameType=2)
containing results from the 50 runs. We summarize:

- The model simulates the parabolic path of a stone, thrown away with a certain
initial velocity. Air resistance is not accounted for but could be added.

- The maximum height reached is ” measured” by the model by means of a state
event taking place when the vertical velocity goes from positive to negative.

- The relation between the initial vertical velocity and the height reached is
investigated numerically by means of an automated sensitivity analysis.

4.4. Example model with Sensitivity and two Events

29

Listing 4.1 The parabolic path of a stone without air resistance.

Title Stone Parabola
PARAMETER Gravity
PARAMETER InitialVX
PARAMETER InitialVY = 1
! plot of the simulated path

Define_Axis Haxis = ’0.0 100.0 20.0 10.0 0.0 X (m)’

Define_Axis Vaxis = ’0.0 500.0 100.0 50.0 0.0 Y (m)’

Assign_Axis Haxis > X ! this assigns the axis Haxis to the variable X
Assign_Axis Vaxis > Y

CURVE XVAR=X; YVAR=Y; CURCOL=’Red’; Legend=’(x(t),y(t))’; Frame=’Path’
TIMER PRDEL = 0.2 ! [s] periodic output at intervals PRDEL

[m/s~2] acceleration of gravity at earth surface
[m/s] initial horizontal velocity
[m/s] initial upward velocity

]
o N O
O O

INITIAL
IX = 0.0 [m] initial position

IVX = InitialVX ! [m/s] initial velocity
IVY = InitialVY ! [m/s]

! simulation control ; note the large FINTIM
TIMER STTIME=0.0 ; FINTIM=10000.0 ; DELT=0.1
TRANSLATION_GENERAL TRACE=1 ; DRIVER=’RKDRIV’

!

IY =0.0 ' [m]
!
!

! The simulation is halted as soon as the stone is back on the ground. This is

! realized with a Finish condition triggered by the "Impact of Stone" state event.

Setting HaltFlag = 0.0 ! flag to be set at impact
EVENT Impact of Stone ! event name appears in logfile if TRACE > O
! event does not take place at initial since there is no zero-crossing then
ZeroCondition Y ! time of zero height is found iteratively
NewValue HaltFlag = 1.0 ! raise the flag !!
Finish HaltFlag > 0.5 ! Finish could be placed outside the event section
ENDEVENT
DYNAMIC
VX = VelocityX ! the rate of change of the position (m) is the velocity (m/s)
VY = VelocityY
X = INTGRL (IX, VX)

Y

INTGRL (IY, VY)

! the rate of change of the velocity (m/s) is the acceleration (m/s"2)
AX = 0.0 ! constant horizontal velocity
AY = -Gravity ! gravity
VelocityX = INTGRL(IVX, AX)

VelocityY = INTGRL(IVY, AY)
! maximum height is reached when the vertical velocity crosses zero
EVENT Top Reached ! event name appears in logfile if TRACE > 0O
ZeroCondition VelocityY ! time of zero vertical velocity found iteratively
TopX = X ! store position at event time
TopY = Y !
TimeAtTop = Time ! store time of event
ENDEVENT
TERMINAL

TimeOfImpact = Time ! time of impact (should be two times TimeAtTop)
PRINT TimeAtTop, TimeOfImpact

! this sensitivity statement explores the role of the initial vertical velocity:
SENSITIVITY Varying=InitialVY; BeginRange=10.0; EndRange=100.0; NumberOfRuns=50

! a sensitivity plot (FrameType=2) combines the results for all runs

Define_Axis VYaxis = ’initial vertical speed (m/s)’ ! automatic axis range
Assign_Axis VYaxis > InitialVY

Define_Axis TTaxis = ’time after start (s)’

Assign_Axis TTaxis > TimeAtTop

Define_Axis TOPaxis ’reached height (m)’
Assign_Axis TOPaxis > TopY
! this plots the top time and top height as function of initial vertical velocity
CURVE Frame=’Top’; FrameType=2;
XVAR=InitialVY;YVAR=TimeAtTop;MARTYP=9;MARCOL="red’ ;Legend=’time to top’
CURVE XVAR=InitialVY;YVAR=TopY ;MARTYP=9 ; MARCOL="blue’ ;Legend="height’
END

30 Chapter 4. Time and state events

Top run 43: Path
T 500
1ol - timetotop e 7500 (x(®).y()
- height .] I
I b — 400
Bl J40E
s ! Ja00S 300
2 13002 =
g | = 5
Satb 4200 % 200
£ 1 8
ok 4100 100
...... x [R R B I . ! .
00 20 40 60 80 100 0 0 60 80 100
initial vertical speed (m/s) X (m)

Figure 4.1. The sensitivity plot ”Top” created with the stone model in Listing 4.1.
For each of the 50 runs separate points have been drawn (see MARTYP in the Curve
statements). The right hand plot is the path frame for run 43.

- The simulation is halted when the stone is back on the ground. An ”Impact
of Stone” state event detects this and is triggers a finish condition.

- This ”Impact of Stone” state event could be used also for reversing the vertical
velocity. In that case the object would bounce back and begin a new parabola.
If you try that, remove the Finish condition and the HaltFlag and add to the
event section VelocityY = —VelocityY.

- All simulated paths and the result of the sensitivity analysis are visualized in
high quality output plots.

Figure 4.1 contains the sensitivity plot with datapoints from 50 runs and also one
of the simulated paths.

Each curve in the sensitivity plot consists of the (X,Y’) points for 50 runs. This
works only if both X and Y occur once and only once in model output, which is the
case here since X is an initial variable (parameter InitialVY) and the Y variables
are the event variables TopY and TimeAtTop defined in an event that takes place
only once during a model run (see also section 5.3.4).

4.5 Event sections: the rules

Many rules are about the references that can be made in event sections to other
variables of the model. A FIRSTTIME statement, for instance, should not refer
to dynamic variables, since the first time event time must be calculated during the
initial phase of the simulation.

The rules of the game:

1. An event section begins with an EVENT statement and it ends with an
ENDEVENT statement.

2. The word EVENT may be followed by the name of the event. The name is
an arbitrary string with at most 31 characters. It may include spaces and
there are no quotes around it. This name appears in the logfile and in some
messages. The name is not a variable and cannot be referred to in any way.

3. An FST program may contain several event sections (actually about 50).

4.5.

Event sections: the rules

10.

11.

12.

13.
14.

15.

16.

17.

. An event section is contained in the INITIAL or in the DYNAMIC section

of the model. Its position in the FST model is not significant. It does not
have any consequences for the way in which the dynamic calculations are
sorted and written to the generated Fortran code. Hence, an event section
may be put close to the initial or dynamic statements to which it is naturally
related. Event sections may also be grouped at the beginning or end of the
DYNAMIC section. This is a matter of style and taste.

. However, when during simulation two or more events occur simultaneously,

the order of execution depends on the order of the event sections in the FST
model. Details on this can be found in section 4.7.

. A time event section must contain one and only one FIRSTTIME statement.

. A FIRSTTIME statement contains a constant or expression specifying the

first event time as function of initially known variables (PARAMETERsS,
CONSTANTS), driver supplied variables and initially calculated variables
including setting variables.

. A time event section may further contain a single NEXTTIME statement.

. A NEXTTIME statement specifies the next time event time as a constant or

expression. The expression may refer to initially known variables, initially cal-
culated variables, dynamically calculated variables, driver supplied variables
and to variables calculated in the same event section where the NEXTTIME
statement is in.

A state event section must contain one and only one ZEROCONDITION
statement.

A ZEROCONDITION statement contains a scalar expression which may refer
to initially known variables, driver supplied variables and all initially and
dynamically calculated variables, including state and setting variables.

An event section may contain one or more calculation statements, defining
variables which are not defined elsewhere in the model. The expressions,
subroutine calls and function calls used may refer to initially known variables,
driver-supplied variables and initially or dynamically calculated variables,
and to other calculated variables defined in other calculation statements in
the same event section. Just like initial, dynamic and terminal calculations,
the calculations in each event section are sorted by the FST translator.

An event section may contain one or more NEWVALUE statements.

Each NEWVALUE statement redefines a state variable or a setting variable,
which may be either a scalar or array variable.

A NEWVALUE definition of a scalar (non-array) state or setting may refer
to itself (the old value of the state or setting).

The NEWVALUE definition of a array state or setting cannot refer to itself.
Such a calculation requires a help variable, an array with the same length,
which is calculated in the event section as a copy of the (old value of) state
ot setting array to be changed.

A NEWVALUE definition must not refer to any other state or setting variable
which is redefined in the same event section.

32

Chapter 4. Time and state events

18. NEWVALUE statement may refer to all other initially known or dynamically
calculated variables, to initially calculated variables, driver supplied variables,
or to calculated variables defined in calculation statements in the same event
section.

19. Just like the INITTIAL, DYNAMIC or TERMINAL section of an FST pro-
gram an EVENT section may contain statements like PARAMETER, CON-
STANT, TIMER. The function of such statements does not depend on their
position anywhere between INITIAL and END. These statements do not in-
terfere with the functionality of the event section.

Rule number 17 probably requires some clarification. The reason for this rule is
that, by allowing such references, the order in which the NEWVALUE instructions
are executed would make a difference. The use of “old values” can always be
realized by calculating a help variable as a copy of a state variable or setting, and
then using the calculated help variable in a NEWVALUE expression.

The order in which the operations specified are carried out is as follows:

1. The sorted calculation statements are executed.

2. Output variables (mentioned in Print or Curve) just calculated in this event
section are sent to output.

3. The NEWVALUE assignments are executed. Their order is arbitrary (see
the rules above).

4. In case of a time event, the NEXTTIME is calculated. This implies that
state and setting variables possibly occurring in the NEXTTIME expression
refer to new values for those states and settings which were just redefined.

This order does not depend on the order of the statements in the event section.

4.6 Reaching a state event

Sofar, the way in which the ZEROCONDITION expression is treated has remained
a bit vague. The reason is that this depends on the type of simulation carried out.

4.6.1 General mode

The event function is monitored during the simulation and as soon as it crosses zero
(from either side) the time at which the zero crossing occurs is found iteratively by
means of a number of bisection steps.

There clearly is some tolerance involved here. This is the value of SEVTOL (State
Event Tolerance), which may be specified in a TRANSLATION_GENERAL state-
ment, but which has a default value of 1.0x107°. As soon as the event function is
within SEVTOL from zero, the event is triggered?.

If the TRANSLATION_GENERAL control variable TRACE is set to 4, the iter-
ative search is reported to the logfile. Listing 4.2 contains such a report from the
stone model in Listing 4.1.

The first lines show a few regular integration and output steps. Then the ”Top
Reached” event function (see Listing 4.1) seems to cross zero. In 17 iteration steps

2SEVTOL may be referenced in expressions.

4.6. Reaching a state event

33

Listing 4.2 Part of the logfile written by the model in Listing 4.1 if the TRACE
variable is set at 4.

+ 0.20000 -=> 7.2000 try next 0.26216
Output flag set ===== 7.2000 rate call
+ 0.20000 --> 7.4000 try next 0.26216
Output flag set ===== 7.4000 rate call
Step Time Event Event function
0 7.6000 2 -0.19430 ([Top Reached] state event)
1 7.5000 2 0.78570
2 7.5500 2 0.29570
3 7.5750 2 5.06978E-02
4 7.5875 2 -7.18022E-02
5 7.5812 2 -1.05522E-02
6 7.5781 2 2.00728E-02
7 7.5797 2 4.76031E-03
8 7.5805 2 -2.89594E-03
9 7.5801 2 9.32189E-04
10 7.5803 2 -9.81873E-04
11 7.5802 2 -2.48419E-05
12 7.5801 2 4.53674E-04
13 7.5802 2 2.14416E-04
14 7.5802 2 9.47870E-05
15 7.5802 2 3.49725E-05
16 7.5802 2 5.06531E-06
+ 0.18017 7.5802 try next 0.26216

Output flag set ===== 7.5802 rate call preparing for event

7.5802 rate call with State Event(s)

7.5802 [Top Reached] state event (error 5.06531E-06)
+ 1.98273E-02 -—> 7.6000 try next 0.10000

Output flag set ===== 7.6000 rate call
+ 0.10000 --> 7.7000 try next 0.35257
+ 0.10000 --> 7.8000 try next 0.35257

(straightforward bisection) the zero event function is reached with a sufficient accu-
racy. Then an event-preparing rate call with output takes place, sending dynamic
variables to output at their pre-event values.

The actual event call to the model is a rate call with output enabled and with the
proper event flags set. The model takes care of the event handling (including output
of event-calculated output variables) and then does a regular rate calculation with
dynamic output. After completion, the event is reported once more and the normal
simulation cycle is resumed.

Note that model calls in the above description are calls to the Fortran-95 model
which was generated by the FST translator from the FST source code in Listing 4.1.
The iteration table also refers to the ”Top Reached” event with number 2, simply
because this event is the second one in the FST source code.

A state event cannot occur without zero crossing of the event function. This implies
that the function must first be at least SEVTOL away from zero and then it may
cross zero (again).

4.6.2 FSE mode

The FSE mode of the translator leads to simulations with a fixed time step, often
set to one day for crop growth models. In fact there is no continuous time in FSE

Chapter 4. Time and state events

mode but there are just discrete time steps. In this situation an adapted time step
in order to reach precisely an event time would be inconsistent with the approach.

Therefore, in FSE mode, events take place as soon as the event time is reached or
passed, or as soon as a zero condition is reached or passed. There is no iterative
search for a precise state event time nor a calculated time step in order to precisely
reach the preset time of a time event.

This approach is a bit crude. It is the only approach, however, which seems con-
sistent with the fixed steps of the process simulation. Crop harvest, for instance,
takes place at a certain day and not at 16:20:10 in the afternoon. The same holds
for fertilization, weeding or other events that may occur in a simulation of crop
growth with a one day time step.

4.6.3 Scaling the event function

The value of SEVTOL is an absolute tolerance. For an event function with values
in the order of, say, one million it does not make sense to require an accuracy of
107, Then the tolerance SEVTOL may be set to a larger value. Increasing the
SEVTOL value, however, will also affect other state events. So, a larger value of
SEVTOL is an option only in models containing a single, or a few similar state
events.

A better method is to scale the event function, i.e. divide it by a constant in such a
way that its values lie at a reasonable distance from zero, for instance in [—1, +1].
An example is an event that takes place when some coordinate X reaches the value
of (parameter) A. The event function would then be (X — A). If this function
becomes very large it is better to write (X — A)/A or to use any other system size
parameter as a scaling constant, like in (X — A)/SystemSize.

4.6.4 Missed state events

In principle state events can be missed if, during a single time step, an event
function crosses zero multiple times. Therefore the time step should be prevented
to become too large, especially if the variable time step Runge-Kutta method is
used. This can be done using the TRANSLATION_GENERAL variable DELMAX.

4.7 Simultaneous events

In case of a model with several event sections, two or more events may occur
simultaneously, on purpose, or by chance. Even in GENERAL mode the time at
which a state event takes place (found iteratively) may sometimes coincide with
a time event or another state event. Here we explain how the generated Fortran
program treats such a situation.

There are two ways of dealing with two simultaneous events. The first method
(“Update Once”) is to execute the code for both events (event calculations, change
state or setting) and then recalculate once all dynamic variables in order to have
new and updated rates of change. The second method is “handle event 1”7, “recal-
culate dynamic variables”, “handle event 2” and “recalculate dynamic variables”.
This method is referred to as “Insert Updates”.

If an update after event 1 does not have any consequences for the calculations and

4.7. Simultaneous events 35

the NEWVALUE statement(s) in event 2, the two methods lead to the same result.
The FST translator, however, does not verify such an event independence and it is
possible to write an FST model for which the results depend on the way in which
simultaneous events are handled. This is different for the two translation modes.

In FSE mode the “Update Once” method is used for all events (state or time).
Hence, there is no dynamic update in between the execution of simultaneous events.
The order of events is the order of their respective event sections in the FST model.

In GENERAL mode the “Update Once” method is used as well, but for the state
events only. If there are simultaneous state and/or time events pending, the simu-
lation driver first handles all state events in a single call to the generated Fortran
model. The state events are handled in the order of their respective event sec-
tions in the FST model. After execution of all pending state events, the dynamic
variables are updated once?, just like in FSE mode.

Pending time events in GENERAL mode, however, are handled after all pending
state events. For time events the GENERAL simulation driver uses the “Insert
Updates” method. Each time event is followed by an update of the dynamic vari-
ables? and simultaneous time events are handled in the order of the (time) event
sections in the FST model.

3Given the SEVTOL tolerance, the event functions of the pending state events all cross zero
for the current system status. A dynamic update after handling just one of the events (an inserted
update) could have implications for the other event functions, for which it was just decided they
cross zero. Hence, when several event functions cross zero simultaneously, the driver must assume
these events are indeed simultaneous and the events take place without update of the dynamic
status in between.

4This can be seen as inserting a zero length time step between simultaneous time events.

CHAPTER 5

Plotting in FST

Section 5.2 contains a brief plotting course. Examples are given in the form of
complete model listings together with the resulting plots. We start with a one-
statement-plot and proceed to more complex examples with axes under user control.
Finally, the results of a series of model runs are combined in a single plot.

Systematic treatment of the plotting statements then begins in section 5.3. A
complete list of CURVE statement variables is given and the defaults are described.
Chapter 5.3.4 describes what happens (or not happens) if plotted variables are
defined in initial, dynamic, terminal or event sections of the model. In section 5.4
the construction of a calendar based time axis is explained.

The plotting style can be influenced by editing the file ”"PlotPreferences.dat”. If
such a file is not there, a default is generated which may be edited in order to
change things like the size of the plots, the size of the axis and legend texts, the
legend position, etc. Some suggestions are given in section 6.

5.1 Why plotting in FST?

The Windows interface of FST contains a facility to plot output variables which is
very useful for model development and explorative calculations. Often, however,
the same plots need to be made again and again, after each model run. The
plots are not saved on file and only a single plot can be seen on screen. Routine
inspection of large amounts of output and ”production runs” therefore require a
faster plotting method.

This has been achieved by adding plotting statements to the FST language. These
statements fully specify the required plots, including things like axis text and curve
color. With these plotting statements the design of clear plots has become part of
the model development process. After investing some time in a neat plotting sec-
tion, the modeler is rewarded with a fast and clear presentation of results, created
automatically after each model run.

The plots are produced in publication quality EPS files (Encapsulated Postscript
files). People using the LaTeX typesetting system can import EPS plots into their
documents. EPS files can also be easily converted into either postscript or PDF
files by the free utilities Ghostview and Ghostscript. A vector graphics editor,
e.g. Adobe Hlustrator, can be used to edit and combine EPS files and add arrows,
explanatory text or pictures. Under OSX on a Macintosh, EPS files are opened by
the standard Preview application.

37

Chapter 5. Plotting in FST

Listing 5.1 This is the FST program for exponential growth from the original FST
manual Rappoldt & van Kraalingen (1996, Listing 2.1). A single, short CURVE

statement has been appended to the model.

INITIAL
DYNAMIC

X = INTGRL (IX,RX)

RX = A * X
INCON IX=1.0
PARAMETER A=0.1
TRANSLATION_GENERAL DRIVER=’RKDRIV’
TIMER STTIME=1.0; FINTIM=10.0; DELT=0.1
PRINT X
TIMER PRDEL=0.5

calculations from here are initial
calculations from here are dynamic
state, initial value and rate of change
calculation of rate of change

set initial value

a single model parameter

the translation mode is selected
timing the simulation

tabular output

time interval between output times

CURVE YVAR=X plotting the result

5.2 Plotting course by example

5.2.1 A quick plot

Listing 5.1 shows the first example model from the original FST manual Rappoldt
& van Kraalingen (1996). Just a single CURVE statement has been added, which
produces the graph in Figure 5.1.

This CURVE statement obviously means that the variable X has to be plotted
on a vertical axis ("y-axis”), which is what the program does. The time interval
between the output points is PRDEL, the interval used for tabular output as well.

Since only a variable name was specified in the CURVE statement, quite some
defaults were used:
- No ”x variable” was specified. By default this becomes TIME.

- No axis was specified for the y variable. A default axis was drawn with the
variable name X along it and with an appropriate numerical range.

- No axis was specified for the x variable TIME. Also for TIME, a default axis

is used.
FSTplot

25F ——X
2.0

< |
1.5+
1.0 :

! | ! | ! | ! | ! |
0 2 4 6 8 10
Time

Figure 5.1. Example plot created with the CURVE statement in Listing 5.1.

5.2. Plotting course by example

- No plot name was specified. The default name FSTplot is used.

- No curve type, curve width, curve color or markers were specified. By default,
the simulated points are not marked and are connected by black lines with a
width of 2 points’.

If the resulting plot is satisfactory, the use of defaults is alright. Larger models,
however, will usually require different line types, different colors or even multiple
plots. The next sections shows how this can be achieved.

5.2.2 More detailed CURVE statements

The exponential growth model in Listing 5.1 is really too small to serve as a suitable
plotting example. Therefore, in Listing 5.2 a slightly more complex model is used.
The model describes two competing populations, with size X1 and X2, each one
with logistic growth in the absence of the other.

Obviously, the first thing to do is to plot the two state variables as function of
time. This requires two curve statements like in Listing 5.2. Figure 5.2 shows the
resulting plot. The curve statements specify that also markers are shown (marker
type MARTYP is set at 8) with size? MARSIZ of 0.07 cm. The points are connected
using solid lines (CURTYP=1) of width CURWID set at 3.0 points®.

LA point is equal to 1/72inch or 0.35 mm. It is commonly used in typography for font size and
is often used for line width as well.

2MARSIZ is actually half of the marker size (for circular markers the radius).

3 A point is equal to 1/72inch or 0.35 mm. It is commonly used in typography for font size and

Listing 5.2 Plotting statements defining a red and a blue curve, each with its
points shown as small black dots. Figure 5.2 on page 40 shows the resulting plot.

TITLE Lotka-Volterra competition
MODEL
INITIAL
DYNAMIC
! the state variables
X1 = INTGRL (IX1,RX1)
X2 = INTGRL (IX2,RX2)
INCON IX1 = 100.0
INCON IX2 = 100.0
! the growth rates
RX1 = RGR1 * X1
RX2 = RGR2 * X2
! relative growth rates are reduced by competition
RGR1 = A1l * (1.0 - X1/K11 - X2/K12)
RGR2 = A2 * (1.0 - X2/K22 - X1/K21)
! parameters
PARAMETER A1=0.1 ; A2=0.2 ! maximum relative growth rates
PARAMETER K11=1000.0 ; K22=2000.0 ! carrying capacities
PARAMETER K12=4000.0 ; K21=2500.0 ! the competition parameters
! simulation control
TIMER STTIME=0.0 ; FINTIM=200.0 ; DELT=0.1 ; PRDEL=5.0
TRANSLATION_GENERAL DRIVER=’RKDRIV’
! plotting
CURVE YVAR=X1; CURCOL=’Red’ ; CURTYP=1; CURWID=3.; MARTYP=8; MARSIZ=0.07
CURVE YVAR=X2; CURCOL=’Blue’; CURTYP=1; CURWID=3.; MARTYP=8; MARSIZ=0.07
END

40

Chapter 5. Plotting in FST

FSTplot
700 1500
600 F 1
500F 1000
3 400F 1%

300F 500
200 f 1
1 OO 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I) 0

0 50 100 150 200

Time

Figure 5.2. Example plot with two curves created with the CURVE statements in model
Listing 5.2. Note that each curve refers to its own y-axis.

The various line types and marker types are listed in the Appendices A and B. It
usually requires some experimentation to get lines and markers right. Without any
specification a solid black curve is drawn. If markers are specified, however, no line
is drawn unless also a curve type different from zero is chosen, like in Listing 5.2.

Figure 5.2 also illustrates the default behavior of FST with respect to axes. For
each variable a plotting axis is generated with the variable name along it. The
numerical range is derived from the simulated values.

In some cases we may want a single axis for two or more variables, for instance in
case they both are concentrations, or the components of a vector. Further, instead
of just a variable name, we want a more meaningful axis text containing also the
unit used. This is the subject of the next section.

5.2.3 A shared axis

If the variables X1 and X2 must share a single axis, this axis needs to be given a
name, say "PopAxis”. Using this name the axis can be assigned to the variables
X1 and X2 by means of ASSIGN_AXIS PopAxis > X1,X2. FST will then plot the
two variables to a single axis and will write the axis text ”X1” along it?.

Instead of letting FST decide, an axis may also be explicitly defined in a statement
DEFINE_AXIS PopAxis=’population size (#)’. This definition replaces the de-
fault axis text ’X1’. FST still figures out, however, what the numerical range of
the axis should be.

The modeler has full control by using a complete axis definition statement like
DEFINE_AXIS PopAxis=’0.0 2000.0 500.0 100.0 0.0 population size (#)’.
This sets the range to [0, 2000], writes labels (numbers) at 0, 500, 1000, . .., 2000 and

is often used for line width as well.
“The text written along the axis is the name of the first assigned variable. This prevents
problems in case of many variables sharing a single axis.

5.2. Plotting course by example

41

Listing 5.3 Plotting statements defining two curves plotted using a single y-axis.

Figure 5.3 shows the resulting plot.

TITLE Lotka-Volterra competition
MODEL
INITIAL
DYNAMIC
! the state variables
X1 = INTGRL (IX1,RX1)
X2 = INTGRL (IX2,RX2)
INCON IX1 = 100.0
INCON IX2 = 100.0
! the growth rates
RX1 = RGR1 * X1
RX2 = RGR2 * X2
! relative growth rates are reduced by competition
RGR1 = A1l * (1.0 - X1/K11 - X2/K12)
RGR2 = A2 * (1.0 - X2/K22 - X1/K21)
! parameters
PARAMETER A1=0.1 ; A2=0.2 ! maximum relative growth rates
PARAMETER K11=1000.0 ; K22=2000.0 ! carrying capacities
PARAMETER K12=4000.0 ; K21=2500.0 ! the competition parameters
! simulation control
TIMER STTIME=0.0 ; FINTIM=200.0 ; DELT=0.1 ; PRDEL=5.0
TRANSLATION_GENERAL DRIVER=’RKDRIV’
! plotting
ASSIGN_AXIS PopAxis > X1, X2
DEFINE_AXIS PopAxis = ’0.0 2000.0 500.0 100.0 0.0 population size (#)’
CURVE YVAR=X1; CURCOL=’Red’ ; CURTYP=1; CURWID=3.0; Legend=’number X1’
CURVE YVAR=X2; CURCOL=’Blue’; CURTYP=1; CURWID=3.0; Legend=’number X2’
END

FSTplot
2000

r number X1
I number X2

& 1500

o) I

N

- :

51000—

© L

S i

Q i

8 500F
0....I....I....I....I
0 50 100 150 200

Time

Figure 5.3. Example plot created with the model in Listing 5.3. Note that the two curves
share a single y-axis.

Chapter 5. Plotting in FST

applies a tickmark distance of 100.0. With the fifth value in the axis definition (here
0.0) one may control the position of the first label®.

This last axis definition is part of the model in Listing 5.3, which produces the
plot in Figure 5.3. Note that we have omitted the markers again, made use of the
default curve type and also added an explicit legend text for each curve.

5.2.4 Two separate axes

Even if two model variables have the same unit, their values may be very different.
In such cases a shared axis, though desirable from a conceptual point of view, is
not very practical.

Two user-defined axes are defined and assigned in a straightforward way, like in
the following plotting section

! plotting
ASSIGN_AXIS Xlaxis > X1
ASSIGN_AXIS X2axis > X2
DEFINE_AXIS Xlaxis = ’0.0 1000.0 250.0 50.0 0.0 population 1 (#)’
DEFINE_AXIS X2axis = ’0.0 2000.0 500.0 100.0 0.0 population 2 (#)’
CURVE YVAR=X1; CURCOL=’Red’ ; CURTYP=1; CURWID=3.0; Legend=’number X1’
CURVE YVAR=X2; CURCOL=’Blue’; CURTYP=1; CURWID=3.0; Legend=’number X2’

The resulting plot is shown in Figure 5.4.

5A zero value as in this example does not do anything. If you want the axis to begin at —200
and the labels should nevertheless be put at 0,500, 1000, ...,2000, the axis definition would be
DEFINE_AXIS PopAxis=’-200.0 2000.0 500.0 100.0 -500.0 population size (#)’. This sets the
starting point for the label generation at —500 and produces the labels at the desired positions
(instead of the awkward series —200, +300, 4800, ...).

FSTplot
1000 2000

r number X1 1

i number X2 i
__750F 11500 —
x0T 7 *x
C L i [
2 500 ~1000-2
© - . ©
> B 1 5
o - 4 o
(@] L i (@]
250 - 500 e

oL v v i 0
0 50 100 150 200

Time

Figure 5.4. Competion model plot with two user-defined axes, made with the plotting
statements in section 5.2.4.

5.2. Plotting course by example

5.2.5 A second plot

A proper inspection of model results will usually require several plots, each one
illustrating a different aspect of the simulation. As an example, we will add a plot
of the trajectory in state space to our competition model®

Plots in FST are called ”frames”, each frame being a rectangular figure with a title,
axes, curves and a legend. The various frames are distinguished from each other by
their names. The time plot in Figure 5.4, for instance, could be named ” TimePlot”
and this exactly what is done in the plotting section of Listing 5.4. We will now
explain this section in detail.

The first four statements define and assign the axes and are exactly the same as in
section 5.2.4. The CURVE statements in Listing 5.4 are different though:

CURVE 1. The first frame is named ”TimePlot”. For clarity, the x-variable is
set with XVAR=TIME and the first plotted variable X1 is specified in the
same way as before (note the continuation line of this statement).

CURVE 2. This statement defines the curve for X2 in exactly the same way as
before. No new frame name is mentioned, which implies that the curve for
X2 is added to the previous frame (the ”TimePlot” frame). The same holds
for the x-variable XVAR. It is omitted from this statement implying that the
previous x-variable (TIME) is used again.

CURVE 3. The second frame is named ”StateSpace” and a curve is defined by
setting the x-variable at X1 and the Y-variable at X2. The curve width is 3
points, the curve color is default (black) and there will be no markers.

The first plot in Figure 5.5 is almost identical to the one in Figure 5.4. The only
difference is that the plot title is now ”TimePlot”, as stated in the first CURVE
statement.

5State space in this case is the plane spanned by an axis X1 and an axis X2. Each point (X1,X2)
of the plane represents a possible status of the system and a simulation in time corresponds to a
trajectory in the plane. Visualization of this trajectory is useful in the study of model behavior.

TimePlot
1000 2000

r number X1 1

i number X2]
7501 41500 —
* r 1 *
~— i] o\
[n 4 C
2 500+ 10008
© 3 B ©
= - : S
Q L . Q
(@] L i (@]
2250 - 500 e

o) I N E N S i 0
0 50 100 150 200

Time
Figure 5.5. Timeplot made with the first two CURVE statements in Listing 5.4.

Chapter 5. Plotting in FST

Listing 5.4 Plotting statements defining the time plot in Figure 5.5 and the state
space plot in Figure 5.6.

TITLE Lotka-Volterra competition
MODEL
INITIAL
DYNAMIC
! the state variables
X1 = INTGRL (IX1,RX1)
X2 = INTGRL (IX2,RX2)
INCON IX1 = 100.0
INCON IX2 = 100.0
! the growth rates
RX1 = RGR1 * X1
RX2 = RGR2 * X2
! relative growth rates are reduced by competition
RGR1 = A1l % (1.0 - X1/K11 - X2/K12)

RGR2 = A2 * (1.0 - X2/K22 - X1/K21)
! parameters
PARAMETER A1=0.1 ; A2=0.2 ! maximum relative growth rates

PARAMETER K11=1000.0 ; K22=2000.0 ! carrying capacities
PARAMETER K12=4000.0 ; K21=2500.0 ! the competition parameters
! simulation control
TIMER STTIME=0.0 ; FINTIM=200.0 ; DELT=0.1 ; PRDEL=5.0
TRANSLATION_GENERAL DRIVER=’RKDRIV’
! plotting
ASSIGN_AXIS Xlaxis > X1
ASSIGN_AXIS X2axis > X2
DEFINE_AXIS Xlaxis = ’0.0 1000.0 250.0 50.0 0.0 population 1 (#)’
DEFINE_AXIS X2axis = ’0.0 2000.0 500.0 100.0 0.0 population 2 (#)’
CURVE XVAR=TIME ; FRAME=’TimePlot’ ;
YVAR=X1; CURCOL=’Red’ ; CURTYP=1; CURWID=3.0; Legend=’number X1’
CURVE YVAR=X2; CURCOL=’Blue’; CURTYP=1; CURWID=3.0; Legend=’number X2’
CURVE XVAR=X1 ; YVAR=X2; FRAME=’StateSpace’;
CURWID=3.0; Legend=’trajectory of (X1,X2)’
END

StateSpace
2000

i trajectory of (X1,X2)
_ 1500
3 L
o i
C L
2 1000
m -
S L
o L
o L
< 5001

0 i 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1
0 250 500 750 1000

population 1 (#)

Figure 5.6. State space plot made with the plotting section in Listing 5.4. Note that the
two axes are the same as in the timeplot of Figure 5.5.

5.2. Plotting course by example

The second plot in Figure 5.6 is the desired state space plot. Note that the axes
used for the variables X1 and X2 are the same as in the timeplot of Figure 5.5.
This illustrates an important feature of FST plotting: an azis in FST belongs to
one or more variables and not to a plot or frame.

Hence, the axis assigned to X1 in the first ASSIGN_AXIS statement is used in
all frames in which variable X1 is plotted. There is no need to worry about the
drawing of x- and y-axes. The rule is very simple: all axes required for the plotted
variables are drawn along or aside from the frameThere may be multiple vertical
axes and multiple horizontal axes. The x- and y-axis implied by the first CURVE
statement of the frame are the primary axes, drawn at their usual positions.

A variable can be plotted only relative to axis assigned to it. We cannot choose
two different axes for the same variable if we plot it twice. In such a (rare) case we
need to plot a copy of the variable in the second plot.

Listing 5.5 The competition model with three reruns produces the four timeplots
in Figure 5.7 and the four state space plots in Figure 5.8.

TITLE Lotka-Volterra competition

MODEL
INITIAL
DYNAMIC

! the state variables
X1 = INTGRL (IX1,RX1)
X2 = INTGRL (IX2,RX2)
INCON IX1 = 100.0
INCON IX2 = 100.0

! the growth rates
RX1 = RGR1 * X1
RX2 = RGR2 * X2

! relative growth rates are reduced by competition
RGR1 = A1l * (1.0 - X1/K11 - X2/K12)
RGR2 = A2 * (1.0 - X2/K22 - X1/K21)

! parameters
PARAMETER A1=0.1 ; A2=0.2 ! maximum relative growth rates
PARAMETER K11=1000.0 ; K22=2000.0 ! carrying capacities
PARAMETER K12=4000.0 ; K21=2500.0 ! the competition parameters

! simulation control
TIMER STTIME=0.0 ; FINTIM=200.0 ; DELT=0.1 ; PRDEL=5.0
TRANSLATION_GENERAL DRIVER=’RKDRIV’

! plotting
ASSIGN_AXIS Xlaxis > X1
ASSIGN_AXIS X2axis > X2
DEFINE_AXIS Xlaxis = 0.0 1000.0 250.0 50.0
DEFINE_AXIS X2axis = 0.0 2000.0 500.0 100.0
CURVE XVAR=TIME ; FRAME=’TimePlot’ ;

YVAR=X1; CURCOL=’Red’ ; CURTYP=1; CURWID=3.0; Legend=’number X1’
CURVE YVAR=X2; CURCOL=’Blue’; CURTYP=1; CURWID=3.0; Legend=’number X2’
CURVE XVAR=X1 ; YVAR=X2; FRAME=’StateSpace’;
CURWID=3.0; Legend=’trajectory of (X1,X2)’

population 1 (#)°

0.0
0.0 population 2 (#)’

END

INCON IX1 = 200.0
END

INCON IX1 = 300.0
END

INCON IX1 = 400.0

END

Chapter 5. Plotting in FST

run 0: TimePlot run 2: TimePlot
1000 2000 1000 2000

number X1 1 [== number X1 1

number X2] [= number X2]
— 41500~ 750 41500
* 1 ¥ E® 0 1 *
— (a\} — o
c 4 c c 4 c
S 110008 S 500 10002
© 1 T T 1 ks
=} 1 =} =} 1 =}
Q o Qo o
o 4 o o 4 o
e 4500 & 250 4500 <

T R B B B T R SRR B

% 50 100 150 200 © 0 100 150 200 ©
Time Time
run 1: TimePlot run 3: TimePlot
1000 2000 1000 2000

number X1 1 [== number X1 1

number X2] [== number X2]
7501 11500 . 750} 11500 —
* 1 ® ® 0 *
—] [V] [\
c 4 c c 4 o
2500 ~1000-2 -8 500 10002
© 1 s © 1 =
> > > >
Q o o + o
o 4 o o L o
=250 {500 = =250 +500 =

R B B ST B R B B S B

% 50 100 150 200 © % 50 100 150 200 ©
Time Time

Figure 5.7. Time plots made by means of the three reruns in Listing 5.5.

5.2.6 Reruns and plotting

At the end of a model, reruns may be defined by means of new values for model
parameters or initial constants (see for details Rappoldt & van Kraalingen, 1996,
section 3.6). This has been applied in Listing 5.5, in which the initial value of X1
is redefined in three rerun sections, leading to a total of four model runs.

The reruns produce a separate plot for each run, as you might expect. Figure 5.7
shows the four timeplots made with the model in Listing 5.5 at page 45. The
run number is automatically added to the plot title. The four plots, however, are
written in the same file, an EPS file with four pages. This allows a comparison of
runs by simply stepping through the EPS pages on screen. Collecting the plots in
a single figure, as in Figure 5.7, requires a graphics editor like Adobe Illustrator.
Similarly, Figure 5.8 shows the four state space plots.

A warning

If an axis range is not explicitly defined in a DEFINE_AXIS statement, FST will
find out a suitable range (e.g. section 5.2.2). It will do so for each run seperately,
however. Hence, if you step through the pages of an EPS file the plots change not
just by the changes in the model, but also by changes in the axes. We therefore
advise the use of a defined axis range in case reruns are made.

5.2.7 Combining runs in a sensitivity plot

Sofar we have considered plots containing results from a single model run. This
"normal type” is the default type and could have been set explicitly by adding

5.2. Plotting course by example 47

run O: StateSpace run 2: StateSpace
2000 2000
[trajectory of (X1,X2) i trajectory of (X1,X2)
—~ 1500 ~ 1500
® r *
[[]
c - c
2 1000 : 2 1000
(3] r ©
= 3 =l
o Q.
o o L
< 5001 < 5001
07””A““A““A““ 07“”A““A““AHH
0 250 500 750 1000 0 250 500 750 1000
population 1 (#) population 1 (#)
run 1: StateSpace run 3: StateSpace
2000 2000
I trajectory of (X1,X2) I trajectory of (X1,X2)
—~ 1500 1500
® r * r
[L [L
c c
2 1000+ 2 1000+
< S
>3 >
[oN o
o L o
= 5001 = 500
07””A““A““A““ 07“”A““A““AHH
0 250 500 750 1000 0 250 500 750 1000
population 1 (#) population 1 (#)

Figure 5.8. State space plots made by means of the three reruns in Listing 5.5.

FrameType=1 to the CURVE statements. There is a second type of plot, which is
set by FrameType=2. The CURVE statements in Listing 5.5 then become

CURVE XVAR=TIME ; FRAME=’TimePlot’; FrameType=2;

YVAR=X1; CURCOL=’Red’ ; CURTYP=1; CURWID=3.0; Legend=’number X1’
CURVE YVAR=X2; CURCOL=’Blue’; CURTYP=1; CURWID=3.0; Legend=’number X2’
CURVE XVAR=X1 ; YVAR=X2; FRAME=’StateSpace’; FrameType=2;

CURWID=3.0; Legend=’trajectory of (X1,X2)’

This combines, for each frame, all runs into a single plot. The resulting time and
state space plots in Figure 5.9 indeed combine the curves in Figures 5.7 and 5.8.

This type of plot is called ”sensitivity plot” for reasons that will become more clear
in the next section.

StateSpace TimePlot
2000 1000 2000

I trajectory of (X1,X2) i number X1 1

number X2 i
— 1500 750 41500
* i * 0 1 *
[aV [-] [aV
C L c 4 c
21000 2 500 —+1000-2
© r] 1 ©
S = =]
o o o
o L o 4 o
< 500(- 2250 4500 <

0 N T T) N N I B] 0
0 250 500 750 1000 0 50 100 150 200
population 1 (#) Time

Figure 5.9. The result of adding FrameType=2 to the CURVE statements inListing 5.5
(which results in the CURVE statements in section 5.2.7).

Chapter 5. Plotting in FST

5.2.8 More on sensitivity plots

Figure 5.9 illustrates a well known property of this kind of competition models.
Under certain conditions, the system evolves to a stable equilibrium (X1,X2), ir-
respective of the initial populations sizes. We will not go into the mathematics or
the biology here, but we study this equilibrium numerically by means of 30 reruns
for different values of the model parameter K12.

The 30 runs are made by the FST model in Listing 5.6. The model itself did not
change at all, but there are a few technical changes relative to Listing 5.5 on which
we make the following comments

- The value of FINTIM has been increased to 500.0 in order to reach equilib-
rium in all reruns.

- PRDEL has been reduced to 2.0 in order to get more smooth curves.

- A terminal section has been added to the model in which the final (equilib-
rium) values of X1 and X2 are assigned to FX1 and FX2 respectively. These
terminal variables FX1 and FX2 are set only once during a model run, at the
end of the simulation.

- The axes X1laxis and X2axis are assigned to the terminal variables FX1 and
FX2 as well.

- The time plot is the same as the one in section 5.2.7. Only the curve width
has been reduced since there will be 60 curves in the plot now.

- In a third type 2 frame named ”Sensitivity” the equilibrium values FX1 and
FX2 are plotted as function of varying parameter K12. Note that no axis is
defined for K12, which means that the FST will construct one.

- A fourth type 2 frame named ”Equilibrium (X1,X2)” is a plot of the equilib-
rium status (FX1,FX2) in state space. Note that the legend text has been
set to a space which means that no legend is drawn.

- The SENSITIVITY statement automatically generates 30 reruns in which
parameter K12 is given values in the range [2200,7000].

The four plots produced can be inspected in Figure 5.10. The plots StateSpace and
TimePlot at the top just combine results of all runs, very much like Figure 5.9. The
curves in these plots would also be there as ordinary plots made with FrameType=1
(but they would be in 30 different plots).

The two bottom plots in Figure 5.10 are different. Each curve consists of 30 inter-
connected points and each of those points is the result of a model run. Along the
curves the model parameter K12 changes instead of time or some dynamic variable.
As a type 1 frame these curves would not exist at all”.

5.2.9 Changing the time axis

In most cases, the default axis for TIME will be satisfactory. An advantage of the
default is that it automatically changes into a calendar time axis (section 5.2.10) in
case of a calendar connection (Chapter 7). Here we briefly discuss how to change
the time axis in the absence of a calendar connection.

"You might expect that the frame ”Sensitivity” with FrameType=1 produces 30 plots, each
with two points (K12,FX1) and (K12,FX2). This is not what really happens, however. SInce K12
is part of the initial output and FX1 and FX2 are part of the terminal output, a type 1 frame
with XVAR=K12 and YVAR=FX1 is empty (try it!).

5.2. Plotting course by example

Listing 5.6 The example model with automated reruns on parameter K12 with
the combined results of 30 runs in four sensitivity plots shown in Figure 5.9.

TITLE Lotka-Volterra competition
MODEL
INITIAL
DYNAMIC
! the state variables
X1 = INTGRL (IX1,RX1)
X2 = INTGRL (IX2,RX2)
INCON IX1 = 100.0
INCON IX2 = 100.0
! the growth rates
RX1 = RGR1 * X1
RX2 = RGR2 * X2
! relative growth rates are reduced by competition
RGR1 = A1 * (1.0 - X1/K11 - X2/K12)

RGR2 = A2 x (1.0 - X2/K22 - X1/K21)
! parameters
PARAMETER A1=0.1 ; A2=0.2 ! maximum relative growth rates

PARAMETER K11=1000.0 ; K22=2000.0 ! carrying capacities
PARAMETER K12=4000.0 ; K21=2500.0 ! the competition parameters
! simulation control
TIMER STTIME=0.0 ; FINTIM=500.0 ; DELT=0.1 ; PRDEL=2.0
TRANSLATION_GENERAL DRIVER=’RKDRIV’
! final values of X1 and X2
TERMINAL
FX1 = X1
FX2 = X2
! plotting
ASSIGN_AXIS Xlaxis > X1, FX1
ASSIGN_AXIS X2axis > X2, FX2
DEFINE_AXIS Xlaxis = 0.0 1000.0 250.0 50.0
DEFINE_AXIS X2axis = 0.0 2000.0 500.0 100.0
! time plot
CURVE XVAR=TIME ; FRAME=’TimePlot’ ; FrameType=2;
YVAR=X1; CURCOL=’Red’ ; CURTYP=1; CURWID=1.0; Legend=’number X1’
CURVE YVAR=X2; CURCOL=’Blue’; CURTYP=1; CURWID=1.0; Legend=’number X2’
! state space
CURVE XVAR=X1 ; YVAR=X2; FRAME=’StateSpace’; FrameType=2;
CURWID=1.0; Legend=’trajectory of (X1,X2)’
! sensitivity plot
CURVE XVAR=K12; FRAME=’Sensitivity’; FrameType=2;
YVAR=FX1; CURCOL=’Red’ ; CURWID=3.0; Legend=’equilibrium X1’
CURVE YVAR=FX2; CURCOL=’Blue’; CURWID=3.0; Legend=’equilibrium X2’
! equilibrium positions in state space
CURVE XVAR=FX1 ; YVAR=FX2; FRAME=’Equilibrium (X1,X2)’; FrameType=2;
CURWID=3.0; Legend=’ ’
! automated reruns on K12
SENSITIVITY Varying=K12; BeginRange=2200.;EndRange=7000. ; NumberOfRuns=30
END

.0 population 1 (#)’
.0

0
0.0 population 2 (#)’

Suppose we want to change the time axis in Figure 5.5 at page 43. Then we may
add the following statements to the model in Listing 5.4 at page 44.

DEFINE_AXIS Time_axis = ’0.0 200.0 40.0 10.0 0.0 time (days)’
ASSIGN_AXIS Time_axis > TIME

This works exactly as for any other variable. There are a few limitations, however.

Chapter 5. Plotting in FST

StateSpace TimePlot
2000 1000 2000
i ajectory of (X1,X2) I 1
1500} 750 11500
* i ® 0 1 *
[aV] — J (a\)
c L c 4 C
21000+ 2 500 1000-2
= i © 1 s
= =] >
Q Q o
[e) L [e) L 4 o
< 500(- ©-250| 4500
Oi R S B S 0 I R N SR B 70
0 250 500 750 1000 0 100 200 300 400 500
population 1 (#) Time
Equilibrium (X1,X2) Sensitivity
2000 1000 2000
i i equilibrium X1 1
7 \ i equilibrium X2 1
. 1500F 750 41500 —
3 r * r 1 ¥
I\ [- L] o
c L c 4 c
2 10001 2500+ 410002
© r © R ©
S = 1 S
o Q. - o
o L o L i [o]
< 5001 4 ~ 2501 4500 =
0"”‘AHHAHHAHH O’AHHA‘H‘AHHAHHAHHA’O
0 250 500 750 1000 2000 3000 4000 5000 6000 7000
population 1 (#) K12

Figure 5.10. The four sensitivity plots made with the model in Listing 5.6 at page 49.

- The name is the axis must be ”Time_axis”. No other axis can be assigned
to variable TIME.

- There must not be a calendar connection (e.g. Chapter 7). If there is a
calendar connection ”Time_axis” can still be used but the label and tick
distances in the axis definition will have another meaning (e.g. section 5.2.10).

The above Time_axis results in a horizontal axis with range [0,200] (instead of
[0,210] of the automatic axis in Figure 5.5), a label distance of 40 days (instead of
50) and an axis text ”time (days)” instead of the automatic text " Time”.

5.2.10 Plotting calendar time
Calendar connection

A calendar connection means that each value of simulated time TIME corresponds
to a unique date and time of the ordinary calendar. A calendar connection consists
of the following two elements (see also Chapter 7).

- The value of STTIME, which is the initial value of TIME, is associated with
a precisely defined time on the calendar.

- The unit of simulated TIME is set. This unit in combination with the value
of TIME—STTIME then determines the calendar time of any value of TIME.

In the competition model used here as an example we can make a calendar con-
nection by adding for instance

TRANSLATION_GENERAL StartYear=2010 ; StartD0OY=1.0 ; OneDay=1.0

o1

5.2. Plotting course by example
TimePlot
1000 2000

r number X1 1

i number X2]
_750f 11500 —
* i 1 *
-~ i . IV
c L i c
2 500+ 410002
© - E ©
S - R S
a L - a
o i i o
<250 4500 <

1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1]

01 51 101 151 209

time (d)

Figure 5.11. The frame TimePlot made by adding the calendar connection in sec-
tion 5.2.10 to the model in Listing 5.4. The time axis is a default calendar time axis.

This sets STTIME equal to the begin of day 1 of 2010 (STTIME is 00:00:00 at
January 1, 2010) and further declares that one calendar day (24 hours) consists of
1.0 units of simulated time, which implies that simulated time is in days®.

Default calendar time axis

If we add the above statement to the model in Listing 5.4 the TimePlot changes
into the one in Figure 5.11. Depending on the length of the simulated period, the
time axis will be given in hours, days, months or years. Note that day numbers
along the time axis are day-of-year numbers which start at 1.00 at the beginning

of a new year”.

Changing the calendar time axis

The default division of a calendar time axis in hours, days, months or years can be
changed for each frame by defining a time label TLabel in a CURVE statement.
This time label divides calendar time in hours, days, weeks, months or years and
also defines what has to be written as time labels along the axis.

In Listing 5.7 at page 53 you find an example. The time label has been set for the
TimePlot frame by TLABEL="$IW=#WEEKNRS$’. The resulting plot is shown
in Figure 5.12a. There is a division of the time axis in weeks (the "W’ left of the '=’
does that) and the labels are placed in the middle of week intervals (the T’ left of
the ’=" does that). The labels themselves consist of the weeknumber "AWEEKNR’.

Note that the distinct weeks in Figure 5.12a are not simply periods of 7 days. They

81f simulated time is in seconds, we would write OneDay=86400.0. If we simulate time in hours,
OneDay=24.0, etc.

9The day-of-year number is not an integer number. If StartDOY is set at 1.5 the simulation
starts at 12:00 of January,1. The reason for using these day-of-year numbers (starting the year
at 1.0 instead of 0.0) is compatibility with crop growth models in which weather data, start time
and harvest time are expressed as day-of-year numbers.

Chapter 5. Plotting in FST

are weeks from monday to sunday with numbers according to the ISO 8601 standard
(http://en.wikipedia.org/wiki/Seven-day_week#Week_numbering and http:
//tuxgraphics.org/toolbox/calendar.html). In Figure 5.12a you may notice
that the first week label is 53. The reason is that January,1 2010 was a friday and
therefore belonged to week 53 of the previous year.

The structure of the time label string is as follows.

- The entire string is between dollar signs ’$’.

- The two character code before the equality sign ’

which time is divided.

=’ determines the way in

- The first character is either 'L’ or I’ which stands for ’label’ or ’interval’. In
case of a labeled axis the time labels (day numbers, week numbers, whatever)
are placed at a certain time, like numbers along an ordinary numerical axis.
In case of an interval axis the time labels are placed in the middle of a time
interval, like the week numbers in Figure 5.12a.

- The second character is "H’ (for hours), 'D’ (for days), "W’ (for weeks), "M’
(for months) or 'Y’ (for years).

- At the right side of the '=’ sign there is one or more codes for week number,
month name in English, month name in Dutch, etc. Between the codes there
may be characters which are copied to each label.

In Figure 5.12 a few examples can be studied. The axis in Figure 5.12¢ is a labeled
month axis ("$LM”) in which the label consists of a combination of #day (which
is day of month) and #monthst (which is the short english month name). Note the

TimePlot TimePlot
1000 2000 1000 2000
i number X1 1 i number X1 1
number X2 @] number X2 @]
750 14500 750 41500
* * B
— i Al ~— 4
c + 4 c c 4
2 500 410002 2500 -1000
© 3 1 T © 3 1
= 3 1 =] 1
o F B o Q. B
Q L] Q 9 L]
“2501 4500 = “250 +500
) TLabel='$IW=#WeekNR$ "] / TLabel='$IM=#MONTHSTS '
Lo [B B i . | . | . | i
053 8 16 24 0 0 Jan Mar May Jul 0
time (w) time (m)
TimePlot TimePlot
1000 2000 1000 2000
i number X1 1 i number X1 1
i number X2 @ 1 i number X2 @ 1
750} {1500 . 750} 41500
* I] E ® I
—] [QUNENE o J
c 4 c c 4
2 500 410002 2500 -1000
© r 1 © ®© 1
=] 3 1 =] 1
Q H 4 o o J
o L 1 o o L 4
S2501 4500 & “250 500
TLabel="'$LM=#DAY-#MONTHSTS ' | / TLabel='$IM=#MONTHST#QYYS$' |
. I . I . I] . I . I . I]
%an T-Mar T-May Toa 0 0 Jan0 Mar10 May'10 Juro ©
time (m) time (m)

Figure 5.12. Plots made with the model in Listing 5.7 at page 53 using different TLabel
settings in the first CURVE statement of frame TimePlot. The four plots contain the
TLabel string used for their time axis construction.

ion 2 (#)

populat

ion 2 (#)

populati

http://en.wikipedia.org/wiki/Seven-day_week#Week_numbering
http://tuxgraphics.org/toolbox/calendar.html
http://tuxgraphics.org/toolbox/calendar.html

5.2. Plotting course by example

93

Listing 5.7 The example model with the use of TLabel for specifying a calendar
time axis. Examples are shown in Figure 5.12.

TITLE Lotka-Volterra competition
MODEL
INITIAL
DYNAMIC
! the state variables
X1 = INTGRL (IX1,RX1)
X2 = INTGRL (IX2,RX2)
INCON IX1 = 100.0
INCON IX2 = 100.0
! the growth rates
RX1 = RGR1 * X1
RX2 = RGR2 * X2
! relative growth rates are reduced by competition
RGR1 = A1l * (1.0 - X1/K11 - X2/K12)
RGR2 = A2 * (1.0 - X2/K22 - X1/K21)
! parameters
PARAMETER A1=0.1 ; A2=0.2 ! maximum relative growth rates
PARAMETER K11=1000.0 ; K22=2000.0 ! carrying capacities
PARAMETER K12=4000.0 ; K21=2500.0 ! the competition parameters
! simulation control
TIMER STTIME=0.0 ; FINTIM=200.0 ; DELT=0.1 ; PRDEL=5.0
TRANSLATION_GENERAL DRIVER=’RKDRIV’
! calendar connection
TRANSLATION_GENERAL StartYear=2010 ; StartD0Y=1.0 ; OneDay=1.0
! plotting
ASSIGN_AXIS Xlaxis > X1
ASSIGN_AXIS X2axis > X2
DEFINE_AXIS Xlaxis = ’0.0 1000.0 250.0 50.0 0.0 population 1 (#)°’
DEFINE_AXIS X2axis = ’0.0 2000.0 500.0 100.0 0.0 population 2 (#)’
CURVE XVAR=TIME; Frame=’TimePlot’; TLABEL=’$IM=#MONTHST#QYY$’;
YVAR=X1; CURCOL=’Red’ ; CURTYP=1; CURWID=3.0; Legend=’number X1’
CURVE YVAR=X2; CURCOL=’Blue’; CURTYP=1; CURWID=3.0; Legend=’number X2’
END

difference with Figure 5.12b in which the month name is used to label an interval
month axis ("$IM”).

More details on time labels can be found in Appendix D . A list of all label codes
can be found there as well, in Table D.2 at page 98.

Tuning the hour, day, week, month or year axis

The primary tool of changing a calendar time axis is the time label string discussed
in the previous section. The axis " Time_axis” can be used to do some fine-tuning.

Useful is changing the axis text. If the time label produces an axis in weeks, for
instance, an axis text "week” looks better than the default text "time (w)” (see
Figure 5.12a). This can be achieved by

DEFINE_AXIS Time_axis = ’week’
ASSIGN_AXIS Time_axis > TIME

Numbers added to the time axis definition have their usual meaning. They define
the axis range, the label and tick distance, and the value of the first label (cf.
section 5.2.3 and section 5.2.9). In case of a calendar connection, however, the

54 Chapter 5. Plotting in FST

label and tick distance in ”Time_axis” have a slightly different meaning. Writing
the time axis definition as Time_axis=’X1 X2 X3 X4 X5 text’, the following rules

apply.

- The numbers X1 and X2 in ordinary order (X1 < X2) supply the
axis range [X1,X2] in units simulation time. The two values may lie below
STTIME and above FINTIM respectively. In that case the axis’ range will
be extended beyond the simulated time interval. Two equal values (X1=X2,
e.g. 0.0 0.0) mean that FST finds out a proper range.

- The numbers X1 and X2 in reverse order (X1 > X2) also supply the
axis range (now [X2,X1]), but FST extends the axis in both directions to the
nearest hour, day, week, month or year, depending on the TLabel used.

- Number X3 is the label distance in azxis time units, as selected by the TLabel.
The interval axis in Figure 5.12a, for instance, uses a label distance of 8
weeks. With DEFINE_AXIS Time_axis=’0.0 0.0 4.0 1.0 0.0 week’ this
is changed into 4 weeks. Similarly, the label distance for a month axis as in
Figure 5.12b can be set to 3 months (quarters). A zero X3 means that no
labels are plotted. A negative value means that FST finds out.

- Number X4 is the tick distance, also in axis time units. The ticks are
drawn starting from the first label in both directions. For an interval axis
with labels, the tick distance is always 1.0 axis time unit and cannot be
changed. A zero X4 means that no ticks are plotted. A negative value means
that FST finds out.

- Note that label distance X3 and tick distance X4 are interpreted as
integer values (the integer nearest to the supplied value is taken). Only in
case of an axis in hours, the fractional parts of X3 and X4 are used to plot
labels and/or ticks at fractional positions between the full hours.

- Number X5 is the value of the first label in units simulation time (the
units of STTIME and FINTIM). FST uses this value as an indication, since
the actual label position must correspond to either the middle (in case of an
interval axis) or the beginning (otherwise) of an hour, day, week, month, or
year. FST labels the interval in which the supplied X5 lies'?. A zero X5
means that FST finds out!!.

These rules are applied in a few examples below. The combination of a TLabel
and a Time_axis allows the construction of practical calendar time axes, which is
important if measured data are evaluated and compared with simulation results.

Some more examples

As a first example we take the model in Listing 5.7 at page 53 with the month
interval axis in Figure 5.12b. We extend the plotted time range and write full
english month names as quarterly labels. The Time_axis and Curve statements
doing this are

DEFINE_AXIS Time_axis = ’-20.0 230.0 3.0 1.0 10.0’
ASSIGN_AXIS Time_axis > TIME
CURVE XVAR=TIME; Frame=’TimePlot’; TLABEL=’$IM=#MonthLT$’;
YVAR=X1; CURCOL=’Red’ ; CURTYP=1; CURWID=3.0; Legend=’number X1’

10The label is actually be written only if it is within range. If the value X5 provided lies left of
axis begin, the label distance X3 is used to figure out where the first label should appear.

11f you want 0.0 as a first label position, you have to supply a slightly different value which lies
in the same hour, day, week, month or year.

5.2. Plotting course by example 95

1000 2000 1000 2000
I number X1 1 I number X1 7
number X2 @ i number X2 @]
750 41500 . _750F 41500 —
* ® E 0] *
—] [V [] (Y]
c 4 c C + 4 c
2500 410002 -2 5001 10002
o r] S © r 1 o
> r > > r 7 =}
o F o o F - o
o L o o L i o
22501 4500 & 2501 500 =
L1 . . I . . I . L I . . I . . I .]
0 January April July 0 0 January April July 0
1000 2000 1000 2000
i number X1 1 i number X1 b
i number X2 @] number X2 @]
7501 41500 . _750F 1500
® 0 1 ® E® 0] *
~ [] [SUNEES o] al
c 4 c c 4 c
2 500 410002 2500+ 10002
[r 1 © © 1 ©
=] 3 S 3 b =]
o + B Q Q g [oX
o L 1 o o L i o
250 {500 & 250 +4500 &
L1 . . I . . I . . I . L1 M R R]
0 Fr1 Mo 4 Th7 Su 10 0 0 Fr1 Mo 4 Th7 Su 10 0
January 2010 January 2010
1000 2000 1000 2000
I number: X1 1 [= number X1 7
number: X2 @] i number X2 @]
750 41500 . _750F 1500 —
* ®E E 0] *
- i N L] [V
c 4 c c + 4 c
2500 410002 -2 5001 10002
K] r] S © r 1 o
> r > > r 7 =}
Q. F [oN o F - Q.
o L o o L i o
22501 4500 & 2501 500 =
0 L1 . I . I . I 0 0 L . I . I . I . I .]
00:00 01:00 02:00 03:00 00:00 01:00 02:00 03:00 04:80
1-January-2010 1-January-2010

Figure 5.13. Plots made using Listing 5.7 with various Time_axis definitions added. For
a detailed description see the text on the examples at page 54. (a) Month interval axis
beginning in december (time=-—20) and ending in august with first label at Time=10,
which is january. (b) Same but with axis bounds automatically extended to the nearest
month begin. (c¢,d) Simulation time unit changed into hours. (e,f) Simulation time units
changed to minutes (by means of OneDay=1440.0), hourly time labels with half hour ticks.

The result is shown in Figure 5.13a. A few remarks on the Time_axis statement:

- The calendar connection in Listing 5.7 states that simulation time is in days
(OneDay=1.0), starting at January,1 of 2010. This means that the axis start
value of —20 lies somewhere in december of the previous year.

- The first label position is X5=10.0, ten days after the start at STTIME=0.0,
which is clearly january.

- There is no axis text in the Time_axis statement and no text appears along
the time axis. Full month names indeed may be sufficient.

- If we write Time_axis=’230.0 -20.0 3.0 1.0 10.0’, with start and end
values in reverse order, we get Figure 5.13b.

For a second example we first change the unit of simulation time into hours by

Chapter 5. Plotting in FST

writing OneDay=24.0 in the Listing 5.7 competition model'?. In the plotting section
we then write

DEFINE_AXIS Time_axis = ’-20.0 260.0 3.0 1.0 10.0 January 2010’
ASSIGN_AXIS Time_axis > TIME
CURVE XVAR=TIME; Frame=’TimePlot’; TLABEL=’$ID=#WDAY #DAY$’;

YVAR=X1; CURCOL=’Red’ ; CURTYP=1; CURWID=3.0; Legend=’number X1’

and show the result in Figure 5.13c. The start of the axis at —20hours is now
at December, 31 of the previous year. The first label position is X5=10.0, ten
hours after the start, which is clearly the first of january. We get a nicer axis,
beginning and ending at midnight, by reversing again the start and end values
(Time_axis=’260.0 -20.0 3.0 1.0 10.0’). Figure 5.13d shows the result.

As a final example we change the simulated time to minutes by OneDay=1440.0
and write

DEFINE_AXIS Time_axis = ’-20.0 230.0 1.0 0.50 10.0 1-January-2010’
ASSIGN_AXIS Time_axis > TIME
CURVE XVAR=TIME; Frame=’TimePlot’; TLABEL=’$LH=#HOUR:#MIN$’;

YVAR=X1; CURCOL=’Red’ ; CURTYP=1; CURWID=3.0; Legend=’number X1’

The result is shown in Figure 5.13e, with Figure 5.13f again the result for reversed
interval bounds. We made use here of the fact that an hour axis can be subdivided
by tickmarks and/or labels. Note also that the plotted axis is not an interval
azris but contains time labels at interval boundaries (the axis type is ”$LH”). By
specifying the minutes in each label'® ambiguity is avoided.

Time labels could be defined as a full time specification with year, month, day and
time, but this usually requires more room than there is. Therefore, the period as
a whole can be described in the axis text, as in the previous example. This axis
text, however, will clearly not change automatically if another StartYear is chosen.
Therefore, the consistency between calendar connection, axis labels and axis text
remains the modelers responsibility.

5.2.11 Plotting simulated time

If you want to use simulated time in a plot (the time variable between STTIME
and FINTIM), the use of just TIME works only as long as there is no calendar con-
nection. With a calendar connection a plotted TIME is converted to automatically
calandar time as we have seen in the previous sections.

If you want to use the simulated time in a plot, also with a calendar connection,
you have to plot a copy of TIME. This has been done in Listing 5.8 which produces
the plot in Figure 5.14.

The copy of time is named SimTIME and will proceed from STTIME to FINTIM
during the simulation, also with a calendar connection. The variable TIME does
as well, but only in calculations. On output, values of TIME are converted to
calendar times.

12This implies another unit of time for all model equations. In case of a real model we would
have to change all parameter values accordingly. Here we do not do that, which means that the
model remains the same numerically, with identical results, now in hours instead of in days.

3The colon between the hours and the minutes is part in the label format in the TLabel
keyword.

5.2. Plotting course by example

Listing 5.8 Simulated time (between STTIME and FINTIM) can always be plot-
ted, also with calendar connection, by using a copy of TIME and treat that copy
as any other variable. The resulting TimePlot is shown in Figure 5.14.

TITLE Lotka-Volterra competition
MODEL
INITIAL
DYNAMIC
! the state variables
X1 = INTGRL (IX1,RX1)
X2 = INTGRL (IX2,RX2)
INCON IX1 = 100.0
INCON IX2 = 100.0
! the growth rates
RX1 = RGR1 * X1
RX2 = RGR2 * X2
! relative growth rates are reduced by competition
RGR1 = A1l * (1.0 - X1/K11 - X2/K12)
RGR2 = A2 * (1.0 - X2/K22 - X1/K21)
! parameters
PARAMETER A1=0.1 ; A2=0.2 ! maximum relative growth rates
PARAMETER K11=1000.0 ; K22=2000.0 ! carrying capacities
PARAMETER K12=4000.0 ; K21=2500.0 ! the competition parameters
! simulation control
TIMER STTIME=0.0 ; FINTIM=200.0 ; DELT=0.1 ; PRDEL=5.0
TRANSLATION_GENERAL DRIVER=’RKDRIV’
! calendar connection
TRANSLATION_GENERAL StartYear=2010 ; StartD0Y=1.0 ; OneDay=1.0
! plotting
SimTIME = TIME ! a copy of time is used in the plots
DEFINE_AXIS STIMaxis = ’0.0 200.0 40.0 10.0 0.0 time (days)’
ASSIGN_AXIS STIMaxis > SimTIME
ASSIGN_AXIS Xlaxis > X1
ASSIGN_AXIS X2axis > X2
DEFINE_AXIS Xlaxis = 0.0 1000.0 250.0 50.0
DEFINE_AXIS X2axis = 0.0 2000.0 500.0 100.0
CURVE XVAR=SimTIME ; FRAME=’TimePlot’ ; 5
YVAR=X1; CURCOL=’Red’ ; CURTYP=1; CURWID=3.
CURVE YVAR=X2; CURCOL=’Blue’; CURTYP=1; CURWID=3.
END

opulation 1 (#)°

0.0 p
0.0 population 2 (#)°
0;
0;

O O

Legend=’number X1’
Legend=’number X2’

TimePlot
1000 2000
r number X1 1
[number X2]
__750f 11500 —
¥ 1 *
-~ L - IV
C L 4 C
2500 410002
© i 1 ©
=} B T =}
Q L g Q
o L 4 o
S o501 4500 <
o) I I E Y S]
0 40 80 120 160 208
time (days)

Figure 5.14. Result of the plotting statements in Listing 5.8.

Chapter 5. Plotting in FST

5.3 How it works

There will be some overlap between the material in this older section and the newly
written plotting course in the previous section 5.2. This section covers also things
like plotting array variables and changing the plotting style.

5.3.1 Overview

If one or more CURVE statements are found, a number of actions takes place. At
first the FST translator generates two additional files. A file named 'FSTplot.dat’
contains a description of the requested plots.

The second file generated is 'PlotPreferences.dat’ which contains plotting style
options. This file can be edited by the user in order to change style options of the
plots (see section 6 at page 69). Once a file "PlotPreferences.dat’ is present in the
model directory, it is not overwritten by subsequent runs of the FST translator.
This means that user changes are preserved until the preferences file is renamed,
moved away or deleted.

Besides generating these two files, the FST translator inserts output statements in
the generated Fortran code through which the requested data values are written
to three binary files during the simulation. After completion of all runs the re-
quested plots are produced by combining the binary data, the plot description in
"FSTplot.dat’ and the preferences in 'PlotPreferences.dat’.

5.3.2 The CURVE statement

A plot (or frame) is defined by means of one or several CURVE statements. Each
CURVE statements plots an additional variable in the frame. A CURVE may
actually be a curve, formed by connecting (x,y) value points, or the (x,y) points
are drawn as markers.

The structure of a CURVE statement is similar to the structure of many other
FST statements. CURVE attributes are defined by means of expressions in the
form keyword=value. The possible keywords and their meaning are.

XVAR The name of the ”x-variable”, just as a variable name and without
quotes, e.g. XVAR=DevelopmentStage. The default XVAR variable is the
one from the previous CURVE statement. If there is no previous CURVE
statement, TIME is used.

YVAR The name of the ”y-variable”, just as a string and without quotes,
e.g. YVAR=TotalDryWeight

LEGEND The legend text for the curve as text in quotes, e.g. LEG-
END="simulated dry weight (g/m2)’.

FRAME The name of the plot in quotes, e.g. FRAME=’crop weights’.
The default FRAME name is the one from the previous CURVE statement.
Hence, if this attribute is omitted, the curve is included in the previous plot.
In practice, a plot is defined as a group of CURVE statements, the first one
defining the plot name by means of the FRAME attribute.

5.3. How it works 59

CURTYP The type of curve as an integer value in [0,7]. See Appendix A.
The default is 1 which is a drawn curve. If a marker type is specified, however,
the default is 0, which means that no curve is drawn.

CURWTID The width of the curve in points. A point is 1/72 inch, which is
about 0.035 cm.

CURCOL The color of the curve defined by means of the name of the color
in quotes. See Appendix C. The default color is 'black’.

MARTYP The type of marker a an integer value in [0,15]. See Appendix B
MARSIZ Half the size of the markers in centimeter.

MARCOL The color of the markers defined by means of the name of the
color in quotes. See Appendix C. The default color is ’black’.

TLABEL This controls the format of a calendar time axis, as explained in
section 5.2.10 and in section 5.4

FRAMETYPE This has default value 1 for an ordinary plot and has value
2 for a so called sensitivity plot in which the results of all runs are combined.
In the special case that each run produces a single, scalar (x,y) datapair, and
FrameType=2, the instructions for plotting markers and/or curves (CurTyp,
MarTyp, CurCol, etc.) are applied to the collection of these (x,y) values. All
runs together produce then a single curve.

Unlike many other FST statements, CURVE statements cannot normally be placed
in arbitrary order'*. We suggest that the CURVE statements defining a plot (or
frame) are kept together in order to make changes easily.

Note that final curve widths and marker sizes are all affected by the scaling of the
plot, which is defined in "PlotPreferences.dat’ (see section 5.3). By default, this
preference file defines the size of the horizontal axis as 14 cm and the size of the
vertical axis as 10cm, to which a default scale factor of 0.80 is applied. A scale
factor of 0.50 yields publication quality plots with vertical axis size of 5cm?.

5.3.3 User defined axes

Usually, a frame (or plot) contains various curves representing related variables,
like different weights, different concentrations, etc. These variables should refer to
a common axis with an appropriate text along it.

DEFINE_AXIS WeightAxis=’8 52 10 2 10 dry weight (gram/m2)°’ defines axis
Weight Axis starting at value 8.0, ending at 52.0, with a label distance of 10.0, a
tick distance of 2.0, and the first label at value 10.0. The text along the axis is ’dry
weight (gram/m?2)’.

An axis is assigned to one or more plotted variables by means of a statement like
ASSIGN_AXIS WeightAxis > LeafWeight, StemWeight, TotalWeight

14Unless every CURVE statement contains a FRAME attribute, the result will depend on the
order of the CURVE statements.

15Since the plots are written as vector graphics, there is in principle no need for size reduction.
In principle, plot size could be set at its final value of, say, 5cm with a scale factor of 1.00.
Nevertheless, the result of a larger plot size in combination with a modest size reduction is easier
to judge on screen and usually simplifies the choice of curve widths and marker sizes.

Chapter 5. Plotting in FST

Listing 5.9 Plotting statements defining a frame with two curves, each with its
own vertical axes. Figure 5.15 on page 60 shows the resulting plot.

CURVE XVAR=TIME ; YVAR=PRED ; CURCOL=’Red’ ; Frame = ’Predator-Prey’
CURVE XVAR=TIME ; YVAR=PREY ; CURCOL=’Blue’

DEFINE_AXIS PREDaxis=’0.0 120.0 20.0 10.0 0.0 predator(#)’
DEFINE_AXIS PREYaxis=’0.0 3500.0 1000.0 500.0 0.0 prey(#)’
ASSIGN_AXIS PREYaxis > PREY

ASSIGN_AXIS PREDaxis > PRED

! initial values and parameters

INCON IPREY = 200.0 ; IPRED = 15.0

PARAMETER R = 0.5; A = 0.01; C = 10.0; B = 0.02; D = 0.1; K = 2500.

! dynamic calculations

RPREY = R * PREY * (1.0 - PREY/K) - FOUND * PRED
RPRED = (B * FOUND - D) * PRED

FOUND = C * (1.0 - EXP (-1.0 * A * PREY / C))
PRED = INTGRL (IPRED,RPRED)

PREY = INTGRL (IPREY,RPREY)

I control

TIMER STTIME=0.0; FINTIM=200.0; DELT=1.0 ; PRDEL=0.5
TRANSLATION_GENERAL DRIVER=’RKDRIV’ ; EPS=0.001

END

This statement assigns the axis WeightAxis to the listed variables. Note that an
axis is always assigned to variables, and not to a frame. Each frame automatically
contains all the axes needed for the curves plotted in it.

Axis names can be chosen by the modeler, as long as the usual rules for variable
names are followed. There is one exception, however. If an axis is assigned to
variable TIME, its name must be Time_Axis.

Unlike other variable types, an axis assigned to one or several variables does not
need to be defined. If left undefined, a default axis will be generated which spans
all the variable values involved. An axis definition may also contain only an axis
text and no values. This is useful if the value range is (yet) unknown.

Listing 5.9 shows an example with two user-defined axes. Figure 5.15 shows the
resulting plot.

Predator-Prey

120
| —— PRED
1001~ PREY : 43000
S -
§ r b 20003;
£ o0 S
e I 1 [oX
S 40
| ~1000
20]
0 PR Y PR 1 | 0
0 50 100 150 200

Time

Figure 5.15. Frame with two vertical axes. The variable names are used as legend text,
since the CURVE statements in Listing 5.9 do not specify legend texts. Note that no time
axis was defined. It has been created automatically.

5.3. How it works

5.3.4 Which data is actually plotted?

This seems an easy question, but it is not. In an FST model we have initial
calculations, dynamic calculations, terminal calculations and event sections. And
all these variables can serve as either XVAR or YVAR in curve statements'®. So
what is actually plotted?

It is helpful to understand that initial variables are sent to output initially, ter-
minal variables after the simulation, variables defined in event sections are sent to
output only at event time and the ordinary dynamic variables are sent to output
periodically with time interval PRDEL.

If you inspect a RES.DAT output file with tabulated output!'” you may notice that
the dynamic variables also get values at start time (just after initialization), at all
event times and at terminal time. So dynamic variables are ”always” there'®, but
the other ones not.

The rule

The general rule is that the x and y values of a plotted pair must refer to the same
moment in time. Hence, if (XVAR,YVAR) is a pair of dynamic variables, valid
(x,y) pairs will be there at periodic output times, event times and terminal.

An initially calculated variable (or a parameter) will be sent to output only once,
and there will be just a single, initial (x,y) point available if the initial variable is
plotted as function of a dynamic variable. In combination with an event variable,
there may be no valid (x,y) pair at all.

Events

Also event variables'” can be plotted. Since an event may take place at arbitrary
moments in time, event output will not normally coincide with periodic "PRDEL
output”. In order to allow event variables to be plotted as function of dynamic
variables, the statements for periodic output are executed at event time as well.

So in case of an event, additional dynamic output takes place just before and just
after the event. This means that each event leads to two additional values for all
dynamic variables, at the same moment in time, but not necessarily with the same
values. This may lead to ”jumps” in the graph, as a result of the discontinuities
taking place at event time.

An event variable is calculated in an event section on the basis of parameters and
other variable values just before the event takes place. Therefore, the compatible
dynamic values are also those just before the event takes place. A plot will therefore
contain only (x,y) combinations just before the event.

Example

In the model of Listing 5.10 (Leffelaar, pers. comm.) at page 63, the event variable
MegaDose is plotted as function of time. Results are shown in Figure 5.16. Indeed,
MegaDose values appear at the event times only. Therefore, MegaDose has been

16For all plotted variables holds that the position of the curve statement is not significant. Only
the section of definition determines when, and how often, the plotted variable is sent to output.

17Such a file is made with PRINT statements.

18This includes state variables and SETTINGs that may be changed in events.

YEvent variables are variables defined in an event section.

Chapter 5. Plotting in FST

2 State Variables 2 State Variables
r —— NPV r —— NPV 8000
i « Dose i « Dose b
[—— SPOD 6000 [—— SPOp
_ 15 15}
g [g [-6000
2 40000 = a
Eof Q Erop e
o | 6w 74000 ¢
2 2
> 2000 >
5 5 42000
1 N AN LN AN 11 AN A TN TR N Y AAS
0 100 200 300 400 0 500 1000 1500 2000
Time Time

Figure 5.16. Results of the model in Listing 5.10. The left hand plot shows a simulation
over 400 time units (FINTIM=400.0) with 5 events.The right hand plot has been created
by setting FINTIM=2000.0

plotted as a series of markers. The state variables are defined at all times and have

been drawn as curves2’.

Note that the definition of variable MegaDose in Listing 5.10 appears after the
NewValue statements. The FST translator, however, guarantees that all event
calculations are carried out before any Newvalue statement is executed. The po-
sition of event calculations within the event section is therefore arbitrary and not
significant.

Exceptions to the rule

Also to the above rule there are exceptions. The first one will be discussed in
section 5.5. An initially calculated array of values can be used in combination with
a dynamic array in order to plot, for instance, concentrations at a series of fixed
positions. The condition is that the re-used values are defined once and only once.

The second exception refers to a scalar (X,Y) pair defined at different moments of
the simulation. Such a value pair can be plotted by means of a sensitivity plot (a
FrameType=2 plot). The X and Y variable must be scalar and each of them is
sent to output once and only once. This holds for instance for a parameter X and a
terminal Y, or a variable defined in a one-time event. Listing 5.6 with Figure 5.10
at page 50 in section 5.2.8 provides a detailed example.

5.4 Calendar time

The topic of a calendar time axis has been extensively treated in section 5.2.10 of
the plotting course. Various examples were presented there and Figures 5.12 and
5.13 at pages 52 and 55 give a impression of the possibilities.

The plotting of a calendar axis is important since a clear and practical time axis
is a great help in comparing model results with measured values (cf. section 8).

20The idea of the model is that a more frequent application of the virus keeps the disease level
at a lower value. Alternatively, a state event may be used to trigger virus application if the disease
level exceeds a threshold.

5.4. Calendar time 63

Listing 5.10 This model (Leffelaar, pers. comm.) describes the control of a crop
disease by means of application of a virus in a time event. Figure 5.16 at page 62
shows the resulting plot. See the text for comments.

TITLE Spodoptera exigua and NPV

! plotting
CURVE Frame = ’State Variables’ ; XVAR=TIME ;

YVAR=MegaNPV ; CURTYP=1; CURWID=2.0; CURCOL=’Red’ ; Legend=’NPV’
CURVE YVAR=MegaDose; MARTYP=8; MARSIZ=0.1; MARCOL=’Black’; Legend=’Dose’
CURVE YVAR=SPOD ; CURTYP=1; CURWID=2.0; CURCOL=’Blue’ ; Legend=’SP0OD’

DEFINE_AXIS VirusAxis = ’0.0 20.0 5.0 1.0 0.0 Virus (milliomns)’
ASSIGN_AXIS VirusAxis > MegaNPV, MegaDose

INITIAL

CONSTANT Miljoen=1.0E+6

! ITnitial values state variables
INCON INPV=0. ; ISPOD=0.01

! Parameters related to the virus
PARAM LIMNPV=3.E5

PARAM TCNPVU=10. ; TCNPVL=50.

PARAM DOSE =1.E7

! Parameters related to the pest
PARAM MXSP0OD=1.E4; RGR=0.5; RDR=1.0
! Parameters related to management
PARAM First =21. ; Period = 90.

! The Cumulative Dose of NPV is also calcutated.
SET CumDose = 0.

DYNAMIC

| State variables

NPV = INTGRL(INPV , RDEGR)
SPOD = INTGRL(ISPOD, RSPOD)

MegaNPV = NPV / Miljoen

EVENT
! Spraying the NPV virus for the "First" time and thereafter with
! intervals "Period". The amount of NPV virus is contained in Dose.
FIRSTTIME StTime + First
NEXTTIME Time + Period
NEWVALUE NPV = NPV + Dose
NEWVALUE CumDose = CumDose + Dose

! defined in event section means plotted at events only
MegaDose = Dose / Miljoen
ENDEVENT

! Rates of degradation of NPV density due to Ultra-Violet Light (TCNPVU)
! and decrease of NPV density due to Growth and Shedding of leaves (TCNPVL)
RDEGR = -(NPV/TCNPVL + NPV/TCNPVU)

! Rate of change of Spodoptera Exigua

GRSPO = RGR+*SPOD*(1.0-SPOD/MXSPOD)

DRSPO = -RDR*SPOD

RSPOD INSW(NPV-LIMNPV, GRSPO, DRSPO)

! Simulation control

TIMER STTIME=0.0 ; FINTIM=2000.0 ; PRDEL=1.0 ; DELT=0.1
TRANSLATION_GENERAL DRIVER=’RKDRIV’

END

64

Chapter 5. Plotting in FST

2 State Variables 2 State Variables
F T Dose - T Dos 8000
e Dose e Dose 1
[—— SPOD 6000 I —— SPOD
~15F] __15F
g [g r 46000
= [«40008 = 8
E 10 € 10}y
101 | 5 = 140005
2 [2
> ot 2000 >
5 ‘ 5 42000
31\ N\ AL LA LLRLERRALL
0320 347 354 0 %40 360 15 35 55 °
time (d) time (d)

Figure 5.17. Results of the model in Listing 5.10 after connecting simulated time to
calendar time, starting at day 340 of 2010 and assuming the hour as unit of time. See also
text for comments.

Therefore we use here another example to illustrate a few points, mainly with
respect to the axes produced automatically under various circumstances.

The model in Listing 5.10 is connected to calendar time by adding to the model
TRANSLATION_GENERAL StartYear=2010; StartD0Y=340.0; OneDay=24.0. The
value of OneDay implies an hour as the unit of time?'. Running the model with
merely this addition (and another time with FINTIM=2000.0) produces the plot
in Figure 5.17.

A few remarks need to be made on the horizontal axis, the time axis of the plots.

- Time values along the time axis have been replaced by Day_Of_Year values
between 1 and 365 (366 for a leap year).

- The value of TIME in the model not affected by a calendar connection, and
is still simulated between start time STTIME and finish time FINTIM. Only
the time axis in the plot is affected.

- For the relatively small number of days in the left hand plot of Figure 5.17,
the day numbers are placed in the middle of the day they refer to. The
numbers do not label a moment in time, but a time interval.

- For a large number of days (right hand plot), FST switches to the traditional
method and the day numbers are written at the beginning of the day they
refer to.

Depending on the time range of the simulation, FST plots a time axis in hours,
days, months or years. The choice of FST may not always be satisfactory, in which
case the user may want to overrule the default calendar time axis.

Changing the calendar time axis, however, is not entirely trivial. In section 5.2.10
various examples were given already. In the example below in section 5.4.1 we just
show how to change the time axis in Figure 5.17.

It is advised to use the default first. Then a TLABEL keyword can be added to a
CURVE statement belonging to the plot, and finally a Time_Axis might be defined
for fine-tuning (see section 5.2.10).

21This correct unit of time is probably a day, but this is not of any concern in this manual.

5.5. Plotting array variables 65

Listing 5.11 Alternative plotting section for the model in Listing 5.10. Time has
been connected to the calendar and a TLABEL has been added.
! plotting
CURVE Frame = ’State Variables’ ; XVAR=TIME ;
TLABEL=’$IW=week #WeekNr #Year$’;

YVAR=MegaNPV ; CURTYP=1; CURWID=2.0; CURCOL=’Red’ ; Legend=’NPV’
CURVE YVAR=MegaDose; MARTYP=8; MARSIZ=0.1; MARCOL=’Black’; Legend=’Dose’
CURVE YVAR=SPOD ; CURTYP=1; CURWID=2.0; CURCOL=’Blue’ ; Legend=’SP0OD’

DEFINE_AXIS VirusAxis = ’0.0 20.0 5.0 1.0 0.0 Virus (millions)’
ASSIGN_AXIS VirusAxis > MegaNPV, MegaDose

! calendar connection

TRANSLATION_GENERAL StartYear=2010 ; StartD0Y=340.0 ; OneDay=24.0

U
O
T
T
N
o
[=
O

2 State Variables 2 State Variables
F T Dose F T Do 8000
ose e Dose 1

[—— SPOD 6000 [—— SPOD
15 | 15
g i g i H6000
= 4000 8 = [| 8
E 10 o E1of o
p | & oo H4000 &5
2 2
> l 2000 > 0

ol 0 ol H L

.

Figure 5.18. The same curves as in Figures 5.16 and 5.17, now with a calendar time axis
defined in the model. See Listing 5.11 and the text for details.

n

week 49 2010 week 50 2010 week 51 2010 dec 2010 jan 2011 eb 2011
time (w time (m)

5.4.1 Another calendar time axis example

The left hand plot in Figure 5.18 shows again the simulation results with the
model in Listing 5.10 over 400 hours. Here, the calendar axis is subdivided in
weeks, however, by means of the TLABEL string ’$IW=week #WeekNr #Year$’ in
the first CURVE statement of Listing 5.11.

The week numbers in the labels are the ones defined by the ISO 8601 standard
which is commonly used in diaries (http://en.wikipedia.org/wiki/Seven-day_
week#Week_numbering and http://tuxgraphics.org/toolbox/calendar.html).
Weeks always begin at monday. Most years have 52 weeks, some have 53.

The right hand plot in Figure 5.18 is again the result for 2000 simulated hours,
using the TLABEL string ’$IM=#maandS #Year$’. More examples can be found
in section 5.2.10. The codes used in TLABEL strings are listed in Appendix D.

There are many possibilities for constructing a calendar time axis. For practical
(crop growth) models which run over a season, a year or several years, it will be
worthwhile to take some time and design a proper time axis, especially if measured
values are included in the plots and discussed with field experts.

5.5 Plotting array variables

The XVAR and YVAR attribute of a CURVE may be the name of an array variable.
There are obviously three cases:

http://en.wikipedia.org/wiki/Seven-day_week#Week_numbering
http://en.wikipedia.org/wiki/Seven-day_week#Week_numbering
http://tuxgraphics.org/toolbox/calendar.html

66

Chapter 5. Plotting in FST

scalar X, array Y. Each element of the Y-array is treated as a scalar variable
and plotted as function of X. Hence, if the array size of Y is 12, there will be
12 curves.

array X, scalar Y. Each element of the X-array is treated as a scalar variable
and Y is plotted as function of it. Hence, if the array size of X is 12, there
will be 12 curves.

array X, array Y. The two arrays must have equal length, say N. For each
output time (at which X and Y are both defined), a curve is plotted from the
data pairs (X(1),Y (1)), (X(2), Y(2)), .., (X(N),Y(N)).

The situation with two arrays often appears in case of a one dimensional grid of
N values at positions X (1), X(2),...,X(IN). Each curve then describes a spatial
profile of Y, e.g. a concentration profile.

Typically, a grid is static and values defined on it (e.g. concentrations) change.
Hence, the X values defining the grid do not change and the same values are used
again and again. Therefore, an exception has been made to the requirement of
equal output times for X and Y.

If only a single value of the array X is found, this value is accepted and re-used
for all output times of Y. This allows the user to define the grid variable X in the
initial section of the model, where it belongs if the grid is static.

5.6 Technical details

A running model actually writes the plots as EPS files. By the graphical user
interface FSTwin these EPS files are converted into PDF files, with help of a call to
Ghostscript. If you do not use FSTwin and instead use a batch file for translating,
compiling and running the model, you may find the information below useful.

5.6.1 Processing EPS files

The generated files are readable ASCII files containing vector drawings in EPS (En-
capsulated Postscript) format. The EPS code can be inspected using any text edi-
tor and the graphics can be converted using Ghostscript??. A suitable ghostscript
command for converting ”plot.eps” into ”plot.pdf” is

C:\"Program Files"\gs\gs9.52\bin\gswin64c -dSAFER -dNOPAUSE -dBATCH

-dQUIET -dEPSCrop -sDEVICE=pdfwrite -dPDFSETTINGS=/printer -dNOPLATFONTS

-dCompatibilityLevel=1.4 -dMaxSubsetPct=100 -dSubsetFonts=true
-dEmbedAllFonts=true -sOutputFile="plot.pdf" -f "plot.eps"

Ghostscript can also be used to convert the EPS drawing into various bitmapped
formats. Under Mac OSX, EPS files are opened by default in the program ”Pre-
view”, which converts them as well.

22Ghostscript for Windows can be downloaded from https://github.com/ArtifexSoftware/
ghostpdl-downloads/releases/download/gs9550/gs9550w64.exe. Ghostscript for Linux can
be downloaded from https://github.com/ArtifexSoftware/ghostpdl-downloads/releases/
download/gs9550/ghostscript-9.55.0-1inux-x86_64.tgz. Ghostscript for Mac OSX has been
prepared by Richard Koch primarily for use with ITEX. It is dowloaded from https://pages.
uoregon. edu/koch/Ghostscript-9.55-Full.pkg.

https://github.com/ArtifexSoftware/ghostpdl-downloads/releases/download/gs9550/gs9550w64.exe
https://github.com/ArtifexSoftware/ghostpdl-downloads/releases/download/gs9550/gs9550w64.exe
https://github.com/ArtifexSoftware/ghostpdl-downloads/releases/download/gs9550/ghostscript-9.55.0-linux-x86_64.tgz
https://github.com/ArtifexSoftware/ghostpdl-downloads/releases/download/gs9550/ghostscript-9.55.0-linux-x86_64.tgz
https://pages.uoregon.edu/koch/Ghostscript-9.55-Full.pkg
https://pages.uoregon.edu/koch/Ghostscript-9.55-Full.pkg

5.6. Technical details

Actually including a graph in a publication may require some fine-tuning. The
FST version number needs to be removed and you may wish to add additional
text, equations or arrows to the figure. This requires the use of a vector graphics
editor. A well known commercial one is Adobe Illustrator. A list of editors can be
found at http://en.wikipedia.org/wiki/List_of_vector_graphics_editors.

Edited EPS files can be included in document preparation programs like ITEX or
Word, or may be sent to the publisher as separate files.

Sometimes printing problems can be prevented by making sure that the vector
graphics does not contain fonts (Helvetica, Times, etc). This can be accomplished
by converting all text to drawings using the ”create outlines” command in the
”Type” menu of Adobe Illustrator.

Adobe Illustrator also allows you to convert all colors (FST uses the RGB color
model) into CMYK colors which is sometimes required for high quality printing,
especially in combination with photographs. Modern digital printing machines,
however, usually deliver good results from RGB files.

Many more suggestions on the preparation of professional artwork can be found at
Cadmus Art Support (http://art.cadmus.com/da/index.jsp). Cadmus (used
by for instance the PNAS journal) requires the use of Adobe Illustrator.

EPS files may also be converted into bitmapped formats like JPG or TIFF. Unless
a very high resolution is used, however, this leads to loss of quality. Bitmaps can
always be distinguished from vector drawings by zooming in. At some point, a
bitmap will reveal its pixels.

5.6.2 Removing date, model name and FST version ”by hand”

If you want to include the generated graphics quickly into a IATEX or Word doc-
ument, it may be a good idea to remove ”by hand” the footer under the graph.
There are two ways.

If you run FST models from a batch file there is an easy method. After translating
the model you may edit the generated file ”fstplot.dat”. In that file you find
the plotting instructions generated form the CURVE statements. The various
plots are listed in a table like structure with column headers ”Plot”, ”Mode”,
”TimeAxisCommand” and ”WriteFooter”. Prior to running the model you change
the WriteFooter entries into ”.false.”.

If you use FSTwin and you do not have access to an EPS or PDF graphical editor
you may just edit the text of the EPS file.
- Open the generated EPS file in a simple editor like Notepad (on Windows)
or TextEdit (on Mac OSX).
- Look for the line ”%%EndPageSetup” around line 65 of the file.

- A few lines further down you see a line containing the date, the model name,
the filename and the FST version number ending with ”la”.

- This line can be deleted or (better) de-activated by putting a single ”%” sign
in front of it.

- Save the file.

Now the plot has no longer the version message below it.

http://en.wikipedia.org/wiki/List_of_vector_graphics_editors
http://art.cadmus.com/da/index.jsp

68 Chapter 5. Plotting in FST

5.6.3 Limitations

The maximum number of frames created by an FST model is 40 and the maximum
number of CURVE statements is 500. There are no other practical limits.

Many thousands of (x,y) values are plotted almost instantly. Nevertheless, one
should be careful not to use a too small value of PRDEL. This does not improve
curve smoothness and just leads to large EPS files, large documents, slow editing
and slow conversion to other graphical file types.

CHAPTER 6

The plotting style file

Listing 6.1 contains the default style file PlotPreferences.dat as it is generated by
the FST translator. The file may be edited and is not overwritten by the translator
as long as it remains there. Hence, after deleting the style file, FST creates a new,
default one during the next translator run.

The meaning of all style variables is explained in the file itself. Therefore just a
few remarks are made.

6.1 Plot size

It is important to realize that PaperSize, XLLcm and YLLcm are in absolute
centimeters and that all other sizes (plot size itself, pen widths, font size, axis
separation distance) are scaled using the scale factor ”Scale”. Hence, this scale
factor is applied to all curve widths and marker sizes specified in the CURVE
statements of the model.

Sometimes a plot becomes unusually large as a result of a larger Scale, a large
DefaultXsize or DefaultYsize, by adding many additional axes, or by values plotted
outside the frame. In this case it may be necessary to increase ”paper size” by
adapting PaperSizeXcm and/or PaperSizeYcm in the PlotPreferences file.

6.2 Thin lines at label positions

By default thin dashed lines are drawn at the position of axis labels. These thin
lines ("long labels”) are helpful in technical plots and during model development.
You can get rid of them by setting the variable ” LongLabels” at ”.false.”.

6.3 Plot title and legend

Similarly, the inclusion of the plot title on top of the plot can be suppressed by
setting ” WriteTitle” at ”.false.” and the position of the legend text can be changed
by means of the variables ”XposLegend” and ”YposLegend”. These, however, are
relative positions in the frame of the plot. An X-position above 1.00 leads to a
legend at the right hand side of the plot.

69

70

Chapter 6. The plotting style file

Listing 6.1 File PlotPreferences.dat with style options. This file can be edited. A
default file is generated by FST after removing the existing file from the working

directory.

! By editing this file you change the style of plots created in subsequent

! model runs. By deleting

this file you force the FST translator to create

! a new copy containing the default values.

! General output options
]

ScreenMessages = .false.
FileForEachPage = .false.
WriteTitle = .true.

! Document and plot size
!

PaperSizeXcm = 18.0 !
PaperSizeYcm = 11.5 !
XLLcm 2.5 !
YLLcm 2.0 !
Scale = 0.80 !
DefaultXsize = 14.0 !
DefaultYsize = 10.0 !
! Fonts

| =====

TitleFont =24 !
AxisTextFont = 20 !
LegendFont = 16 !
LabelFont = 18 !

! Line widths in pixel
!
PenWidthAxis
PenWidthLabels
PenWidthTicks
PenWidthMarkers

|
O - = =
[JNeoNeoNe]

! to suppress most screen output
! to get each page on a separate file
! plot name on top of each frame

! document size, does not depend on Scale

! Position of Lower-Left corner of plot

(fixed, not scaled)

! plot scale factor (size, fonts, pen widths, distances)
! X axis in cm (will be scaled)
! Y axis in cm (will be scaled)

Helvetica font sizes in pixels (will be scaled)

! pixel (will be scaled)

! Label and tick mark options

LongTicks = .false. ! grid of long dashed tickmarks
PenWidthLongTicks = 0.4 ! pixel

LongLabels = .true. ! grid of long dashed labels
PenWidthLonglLabels = 0.6 ! pixel

TickLineLength = 0.16 ! cm. A negative value means the ticks/labels
LabelLinelLength = 0.30 ! are plotted to the outside of the plot.

! Additional axes
|
AddXaxesOnTop = .t
AddXaxisOffset
AddXaxisDistance =
AddYaxisOffset

AddYaxisDistance

|]
N O N O
OO O OoOHR

! Plot name and legend
!
XposLegend = 0.05
YposLegend 0.94

additional X-axes added above or below graph
distance between graph edge and 2-nd X-axis
distance between additional X-axes

distance between right graph edge and 2-nd Y-axis
distance between additional Y-axes

I (-) legend X-position relative to primary X-axis
I (=) legend Y-position relative to primary Y-axis

6.4. Footer 71

6.4 Footer

If you want to get rid of the footer (the date, model name and FST version number
in small type below the plot), you have either to edit the plot in a graphical
editor like Adobe Illustrator or use one of the methods described in section 5.6.2
at page 67. It cannot be done by means of the preferences file.

CHAPTER 7

Calendar connection

7.1 Introduction

The FSE mode of the translator is most often used for crop simulation. The FSE
mode requires the day as unit of time and all rates of change to be expressed as
amounts per day. The FSE mode requires the specification of WEATHER data.
Therefore, in FSE mode, there is always a connection between simulated time and
calendar time.

The TRANSLATION_GENERAL mode of FST does not imply a certain unit of
time. Equations may be dimensionless or in convenient time units, depending on
the problem. The addition of WEATHER is possible, also in GENERAL mode. By
doing just that, however, the start time STTIME suddenly becomes a Day-Of-Year
value (between 1.000 and 366.000 for a non-leap year), and the unit of simulated
time must be a day.

Hence, in FST 2, the use of WEATHER in general mode eliminated the possibility
of a convenient unit of simulated time and convenient values of STTIME and
FINTIM. And without a WEATHER statement!, simulated time is in unspecified
units, there is no connection between simulated time and calendar time and access
to measured data would be impossible.

The solution is the addition of a few optional TRANSLATION_GENERAL vari-
ables, which explicitly define a connection between simulated time and calendar
time.

7.2 Connecting the calendar

Since FST 3, a method exists for connecting calendar time to the simulation in
GENERAL mode. Three additional TRANSLATION_GENERAL variables are

introduced:

StartYear. The year at which the simulation starts.

StartDOY. The Day-Of-Year (between 1.0000 and 366.0000 for a non-leap
year) at which the simulation starts.

OneDay. The length of a day in model time units. For example, “One-
Day=86400.0" means the model is in seconds, “OneDay=1440.0" means the

In FSE mode a WEATHER statement is obligatory.

73

Chapter 7. Calendar connection

model in in minutes, “OneDay=24.0" means hours and “OneDay=0.1" means
decades as the unit of time of the model equations.

The combination of StartYear and StartDOY defines the start time as a calendar
time. The FST translator identifies the value of STTIME with this calendar time
and from that moment on, the simulated Time (starting at STTIME and ending
at FINTIM), is connected to the calendar using the value of OneDay. Hence,
by defining these three TRANSLATION_GENERAL variables, the simulated time
becomes connected to the calendar time.

The advantage of this method over the old method of FSE 2 is that the user is free
to choose convenient values of STTIME and FINTIM, needed for other aspects of
the model. The choice is independent of the simulated calendar interval and there
is no implied unit of time.

Another advantage is that a calendar connection does not require a WEATHER
statement anymore. Using subroutines, other types of input data become possible.
A WEATHER statement is still valid, however.

7.3 Calendar connection with WEATHER

Like in FST 2, weather data are made available through a WEATHER state-
ment. There is just one problem: The start year StartYear is also defined by
the WEATHER variable IYEAR. Therefore, a program explicitly defining a calen-
dar connection with StartYear, StartDOY and OneDay, must not contain IYEAR
anymore.

Without the three new variables, however, the old method still works. A WEATHER
statement implies “Start Year=IYEAR”, “Start DOY=STTIME” and “OneDay=1.0"
and the generated datafile TIMER.DAT contains just that.

7.4 The available calendar variables

A calendar connection in GENERAL mode, either explicitly (by means of the new
TRANSLATION_GENERAL variables), or implicitly (by WEATHER use) makes
available the following variables as “driver-supplied variables”:

iDOY The current Day-Of-Year as an integer variable, in the range [1, ..., 365]
for a non-leap year and [1,...,366] for a leap year.

DOY The current Day-Of-Year as a real number (with a fractional part).
Year The current year number as a real variable.

ClockTime The clocktime as a real value between 0.0 and 23.99999.
SimDays Simulated time sofar, a real value in days (with a fractional part).

iHourOfDay The hour number of the day, as an integer value in the range
[1,...,24].

FractSec Fractional seconds reading of a digital clock as a real number in
[0.00,...,1.00).

ClockSec The integer seconds reading of a digital clock, in [0,. .., 59].

7.5. Referring to StartYear, StartDOY and OneDay

ClockMin The integer minutes reading of a digital clock, in [0,...,59].
ClockHour The integer hours reading of a digital clock, in [0, ..., 23].
ClockDay The calendar day as an integer, in [0,. .., 31].
ClockMonth The calendar month as an integer value, in [1,...,12].

ClockYear The integer year reading of a digital clock, in value equal to the
variable Year.

Although the variables DOY, Year, ClockTime, SimDays and FractSec are single
precision real values, the internal timing calculations of the simulation driver take
place in double precision arithmetic. The driver-supplied clock variables are there-
fore accurate, also in case of a simulated time interval of thousands of days (many
years).

From these variables only iDOY, DOY and Year are available in FSE mode?. In
FSE mode the calendar is connected by means of the required WEATHER state-
ment.

Note that the integer calendar variables can directly be used to select an array
element by means of the ELEMNT function, like in

! example of the use of an integer calendar variable
DECLARATIONS
ARRAY Values

MODEL
PARAMETER MonthValues(1:6) = 2.0 ; MonthValues(6:N) = 3.0
INITIAL

ARRAY_SIZE N=12
X = ELEMNT (Values, ClockMonth)

END

The ELEMNT function is an intrinsic FST array function described in Rappoldt
& van Kraalingen (1996, section 4.3.4.2).

7.5 Referring to StartYear, Start DOY and OneDay

The new control variables StartYear, StartDOY and OneDay can be referenced
in calculations. The first two are integer variables and OneDay is a real vari-
able. The use of these variables requires an explicit definition in a TRANSLA-
TION_GENERAL statement, however. An implicit calendar connection with just
a WEATHER statement, does not allow references to StartYear, StartDOY and
OneDay.

This limitation should not be a problem in practice since a calendar connection
with WEATHER is most likely to occur in older FST models, in which the new
variables are not used anyway. For newly written programs, an explicit connection
is the preferred method.

2The WEATHER variable iYear is the start year of the simulation and cannot be referenced in
an FST model. The current year of the simulation is available as the REAL variable Year, which
may be converted to an integer by NINT(Year). In general mode the integer variable ClockYear
can be used.

CHAPTER 8

Measured variables

8.1 Introduction

Measured variables in a simulation model serve two purposes:

e Comparison of simulated values with measured values. This can be simply
done by plotting both the simulated and measured variable in a single frame,
or by calculating some sort of average deviation between the two.

e Sometimes the modeler wants to drive the simulation with measured values.
For instance, a biological process depends on temperature and a measured
series of temperatures is used to drive the simulation.

The use of weather data in a crop model is a good example. In FST weather data
can be accessed through the WEATHER, statement. The WEATHER statement,
however, works for daily weather data only and not for other types of data.

The new FST statements MEASUREMENTS and MEASURED represent a more
generic mechanism for accessing data from within an FST model.

Usually, files containing measured variables have the structure of spreadsheets with
columns for date and time, and with one or more columns with measured variables.
This is precisely the type of file which can now be used in FST. In principle, the
modeler simply has to specify the name of the file, the name of the data and time
columns, and the name of the columns containing the variables to be used.

8.2 Example model with measured data

Table 8.1 shows a portion of the spreadsheet type of file which is used in the
examplle model of Listing 8.1. Clearly, the FST translator must "know” the name
of the datafile, the name of the date and time columns and the names of the columns
which are to be used as dynamic variables in the calculations.

If there are large time gaps or missing data (denoted by a hyphen), FST uses
linear interpolation between the provided values. Further, FST will not perform
simulation steps outside the data range for which the data is provided. Hence, the
simulated time must be part of the time spanned by the measured data.

This requires of course a calendar connection which is made in Listing 8.1 by means
of the first Translation_General statement which sets the start time at the beginning
of day 340 of 2008 and sets the hour as the unit of simulated time.

77

78 Chapter 8. Measured variables

Table 8.1. Portion of the spreadsheet like datafile ’'sample.txt’ which is used in the FST
model of Listing 8.1. The data consists of columns with a header containing the names.
The file is a comma- or tab-delimited text file. Note the format of the date and time
columns. They are separate columns and the time may contain seconds as well. Date and
time formats can be changed in spreadsheet programs like NeoOffice or Microsoft Excel.

date time Toutside abuist003 aCO0202 rCO201 wCO201
2008/12/01 00:05 4.4 44 773 524 443
2008/12/01 00:10 4.5 43 765 524 448
2008/12/01 00:15 4.5 45 745 528 454
2008/12/01 00:20 4.4 48 748 522 456
2008/12/01 00:25 4.4 43 728 521 454
2008/12/01 00:30 4.5 44 679 521 445
2008/12/01 00:35 4.6 43 634 513 447
2008/12/01 00:40 4.5 43 - 513 452
2008/12/01 00:45 4.5 41 - 514 450
2008/12/01 00:50 4.6 40 - 514 447
2008/12/01 00:55 4.7 42 586 513 436
2008/12/01 01:00 4.8 42 585 516 443
2008/12/01 01:05 4.7 42 528 517 452

2008/12/01 01:10 4.7 42 520 522 465

The measured variables can be used in all model sections since they are defined for
all time values occurring in the simulation. They can also be plotted which is a
convenient way of inspecting the data (e.g. the example output plot in Figure 8.1
at page 80).

8.3 The input file

The MEASUREMENTS statement can be used to specify the following variables

Datafile The name of the datafile as a string, e.g. Datafile="MyData.txt’.
The file needs to be a plain text file with the structure of a spreadsheet:
columns with a name on top. There may be comment lines starting with an
exclamation mark ”!” or an asterisk ”*”.

DateColumn The name of the column containing the date, e.g. DateCol-
umn="Datum’. This is an optional variable. If not specified, FST assumes
there is a column named ’Date’.

TimeColumn The name of the column containing the time, e.g. DateCol-
umn="Tijd’. This is an optional variable. If not specified, FST assumes there
is a column named "Time’.

Delimited This is an optional integer variable describing the way in which
columns are delimited. Possible values are 1 (TAB-delimited), 2 (Comma-
delimited) or 3 (Space-delimited). If the Delimitted variable is omitted, or if
a zero value is given, FST tries to find out using word separation in the first
non-comment line.

In many cases only a file name will be required and the statement will look like
MEASUREMENTS Datafile=’MyData.txt’.

8.3. The input file 79

Listing 8.1 The use of measured data in a model requires spreadsheet like input
file with columns for date, time and the desired input variables. Figure 8.1 at
page 80 shows the result of the program below. A part of the datafile ’'sample.txt’
is shown in Table 8.1.

Title Use of Measured data

! — Example file ’sample.txt’ contains many columns, just two of which are
! needed in this program, Toutside and rC0201 (see Measured statement).

! — There must be a date and time column, otherwise FST cannot couple

! the data to simulated time.

! - The delimited code is set at O (unknown). FST tries to find out how

! the columns are separated. Sometimes you may have to choose

! 1 (TAB-delimited), 2 (Comma-delimited) or 3 (Space(s) only).

! — There are missing data in the example file, the separating TAB’s are

! present, however, so FST can distinguish between the columns.

MEASUREMENTS Datafile = ’sample.txt’ ; DateColumn = ’Date’ ;
TimeColumn = ’Time’ ; Delimited = O

! — There must be a calendar connection. Otherwise there is no

! connection between datafile time and simulated time.

! The model TIME in this example is in hours since Oneday=24.0.
TRANSLATION_GENERAL StartYear=2008 ; StartD0Y=340.0 ; OneDay=24.0

! just two variables are needed here
MEASURED Toutside, rC0201

! measured data can be used in calculations
ToutsidePlusb5 = Toutside + 5.0

! measured data can be used in plotting
DEFINE_AXIS Tax = ’Temperature (oC)’
DEFINE_AXIS Cax = ’C02 (ppm)’
ASSIGN_AXIS Tax > Toutside, ToutsidePlus5 ! the temperatures share an axis
ASSIGN_AXIS Cax > rC0201
! three curves in a plot
CURVE XVAR = TIME; YVAR = Toutside; Frame ’Measured’ ; ...
Legend = ’Outside Temp’; TLABEL=’$ID=#Wday #DAY-#MONTHST-#Year$’
CURVE XVAR = TIME; YVAR = ToutsidePlusb5 ; CURTYP = 5 ; CURWID=1.0 ;
Legend = ’Outside Temp + 5’
CURVE YVAR = rC0201; CURCOL=’Red’

TRANSLATION_GENERAL TRACE=1 ; DRIVER=’EUDRIV’
TIMER STTIME=0.0 ; FINTIM=48.0 ; DELT=0.01 ; PRDEL=0.01 ! 48 hours !
END

A datafile is usually constructed by exporting a sheet as a TXT or CSV file from a
spreadsheet program. As field delimiter a tab, space or comma can be used. Text
fields should not be delimited, however, so there should not be quotes around the
column names.

Note that the Date and Time columns must be two separate columns. The format
of the Date column is one of the TTUTIL formats. Usually either yyyy/mm/dd or
dd-mmm-yyyy, for example 1994/08/31 or 3-sep-1994. Unfortunately, the common
format dd/mm/yyyy cannot be used and files containing it have to be changed!.

!This is most easily done by importing the file in a spreadsheet program, change the format of
the date column and re-export the file as a text file.

80

Chapter 8. Measured variables

14 560
— 540
g’ 12 520 ¢

€
- g
= 10 500 —
5 QAl
Q_ O
£ 4800
o 8
= 460
6 440
|
Fr 5-Dec-2008 Sa 6-Dec-2008
time (d)

Figure 8.1. The Measured statement in Listing 8.1 makes available the columns "Tout-
side’, 'rCO201’ in datafile Sample.txt. The data can be used as any other defined variable,
in calculations and in Curve statements for plotting. The model in Listing 8.1 simulates
just two days. Plots like these can be used to check and inspect the data.

The time column must have the usual format hh:mm:ss. Seconds may be omitted.
Fractional seconds may be added.

Missing values must be marked as a hyphen ”-”. Missing values may occur for mea-

sured variables, but not in the date and time columns. During model translation,
FST checks the datafile.

Simulated time must be contained in the time range spanned by the date and time
columns of the input file.

8.4 Getting the measured variables

The names of the variables to be used in the model are simply listed in a MEA-
SURED statement, e.g. "MEASURED C02,0xygen’. The FST translator treats these
variables as defined by the MEASURED statement. On model execution, time

35¢

—— Above crop
Crop layers
Below crop

(]
o
T

= Measured at 3.3 m

Temperatuur (0C)
n n
o o

o
T

10 : n 1 n 1 n 1 n 1
13/03 09:00 13/03 21:00 14/03 09:00 14/03 21:00 15/03 09:00
time

Figure 8.2. Plot of simulated temperatures (above the crop, a number of crop layers and
below the crop), and temperatures measured at 3.3m. The plot has been made with the
EcoCurves model for crop growth and greenhouse climate.

8.5. Example from practice 81

Listing 8.2 Statements producing the graph in Figure 8.2, in which measured and
simulated temperatures are compared. Produced with the EcoCurves model for
greenhouse climate. Note that variable CropT is an array variable plotted as a
number of green curves.
! this reads the data

MEASUREMENTS Datafile=’temp.txt’
MEASURED TempM

! plot all temperatures in a single frame
CURVE Frame=’Temperature’ ; TLABEL=’$LH=#Day/#Month #Hour:#Minutes$’;

YVAR=Above ; CurCol=’Red’ ; Legend = ’Above crop’
CURVE YVAR=CropT ; CurCol=’Green’ ; Legend = ’Crop layers’
CURVE YVAR=Below ; CurCol=’Black’ ; Legend ’Below crop’

CURVE YVAR=TempM ; CurCol=’Purple’ ; Legend ’Measured at 3.3 m’
! temperature axis

DEFINE_AXIS TempAxis = ’9.0 35.0 5.0 1.0 10.0 Temperature (oC)’
ASSIGN_AXIS TempAxis > Above, CropT, Below, Temperature

interpolated values are supplied to the model (linear interpolation between suc-
cessive data). This obviously requires a calendar connection, either explicitly (see
Chapter 7), or by means of a WEATHER statement.

Measured variables may be used as ordinary scalar variables in all calculations,
including those in event sections, and may be plotted by means of CURVE state-
ments.

8.5 Example from practice

Figure 8.2 shows several simulated greenhouse temperatures and a single measured
temperature. The plot originates from calculations with the ” Explorer Kasklimaat”
model of EcoCurves.

This is a large applied model, around 20,000 lines of code, which simulates crop
growth, crop development and greenhouse climate. It is an FST model?, written
in close cooperation with Plant-Dynamics. The FST facilities for measured data,
plotting and event handling are heavily used.

Listing 8.2 shows the statements required for constructing a plot like the one in
Figure 8.2. The plot shown is wide, which can be realized by setting a different
plot size in PlotPreferences.dat (cf. section 5.3).

2Large portions of the model have been written as linked Fortran-2003 modules.

CHAPTER 9

Other changes

9.1 Syntax

In FST 3 and FST 4, the following changes have been made to the syntax checking
procedures of the translator:

The length of variable names has been increased to 31 characters, in accor-
dance with the Fortran standard (Metcalf et al., 2004; Chapman, 2008).

Warnings on the use of lowercase characters have been removed from the
translator. Character case is not significant, however. This means that the
same variable may occur in the program in various combinations of lowercase
and uppercase characters.

A program line may be up to 132 characters long, including the continuation
code “...”, which has been left unchanged.
Statements with a asterisk “x” at the first position or statements beginning

with an exclamation mark “!” in any position are treated as comment state-
ments.

An FST statement may be terminated by an exclamation mark followed by
comment text. This is especially useful in parameter statements for adding
a unit and description to the defined parameter (e.g. Listing 4.1 at page 29).

The use of lowercase characters is a matter of taste and style. Lowercase characters
allow names as “VelocityX” or “MolarVolume” which are usually considered to be
more readable than names like MOLARVOLUME. It may be a good idea to keep
the FST keywords themselves in uppercase, which leads to statements like
! example of the use of lowercase variable names

CONSTANT MolarVolume = 22.4

PARAMETER Height = 2.0 ; Width = 3.0
INCON InitialVelocityX = 3.4 ; InitialVelocityY = 5.6

Assignments in the generated Fortran will contain the variable names as they ap-
pear in the FST calculation statements. The first occurrence of a variable in FST is
used in the generation of declarations, datafiles and variable listings. An exception
is the use of FUNCTION names in AFGEN function calls. For technical reasons,
these names appear in uppercase in the generated Fortran.

By combining a Sensitivity statement with a sensitivity plot in the same model,
you can automatically do a sensitivity analysis on a model parameter. Examples
can be found as Listing 5.6 at page 49 and Listing 4.1 at page 29.

83

84 Chapter 9. Other changes

9.2 New intrinsic functions

9.2.1 The intrinsic function SimulationTime

The intrinsic function SimulationTime converts a Date/Time specification into a
value of the simulation time between STTIME and FINTIM. This clearly requires a
calendar connection, either explicitly by setting StartYear, Start DOY and OneDay
in TRANSLATION_GENERAL mode, or implicitly by means of the WEATHER
statement in FSE mode'.

The arguments of SimulationTime are six integer values, variables or expressions,
Year, Month, Day, Hour, Minute, Second, in this order. For example, if the time
interval between Jan-15 and June-1 of the start year is needed in a simulation as
variable DeltaT, this variable can be calculated in the INITIAL section as

! example of SimulationTime function call
deltaT = SimulationTime(iYear,6,1,0,0,0) - SimulationTime(iYear,1,15,0,0,0)

The value of DeltaT will be in days in TRANSLATION_FSE mode, but DeltaT
will be in other time units in TRANSLATION_GENERAL mode, depending on
the value of OneDay in the calendar connection. And of course, in leap years the
period will be one day longer since February, 29 lies within the specified period.

A more interesting application of the function SimulationTime is the calculation of
the time of a time event (see Chapter 4). The statement below calculates the first
event time as 15-May-2008 13:14:17 plus an additional X time units.

! a calculated time in a FirstTime statement
EVENT
FirstTime SimulationTime(2008,5,15,13,14,17) + X

ENDEVENT
The construction below uses an event date as model parameter. For just a date
(and a fixed time 00:00:00, say) we need three numbers. A parameter array Date is

declared with array size 3. The three elements are converted into integer numbers
in the SimulationTime call. Here is the code:

! a date as a model parameter
ARRAY Date(1:ND)

ARRAY_SIZE ND=3
PARAMETER Date(1:2)=2008.0, 5.0 ; Date(3:ND)=15.0

EVENT
FirstTime SimulationTime(NINT(Date(1)),NINT(Date(2)),NINT(Date(3)), 0,0,0)

This construction allows reruns on calendar dates at which an event takes place!

9.2.2 The intrinsic functions SUM and DOT_PRODUCT

The Fortran-95 intrinsic functions SUM and DOT_PRODUCT (Metcalf et al., 2004;
Chapman, 2008) have been added to the list of supported Fortran intrinsics. SUM

'In TRANSLATION_FSE mode the start year is given as IYEAR in the required WEATHER
statement, the value of STTIME is the start value of the calendar DOY (Day Of Year) and the
unit of time is always one day.

9.3. String arguments of subroutines and functions

accepts a single array argument and DOT_PRODUCT requires two arguments
declared as arrays with identical upper and lower bounds.

Explicit array bounds in calls to SUM and DOT_PRODUCT are not supported by
FST, however. If you want that, you have to use the FST intrinsic functions AR-
SUMM and ARIMPR respectively. SUM and DOT_PRODUCT have been added
for increased speed when the entire arrays need to be summed or multiplied.

9.2.3 Other new intrinsic functions

Other additions to the list of supported Fortran intrinsic functions are CEILING,
FLOOR, AMAX0, AMAX1, AMINO, AMIN1 and FLOAT. The definition of these
functions can be found in descriptions of the Fortran language.

9.3 String arguments of subroutines and functions

Fortran subroutines could always be called from FST for doing standardized cal-
culations or for calculations which are impossible, inefficient or clumsy in the FST
language itself. The arguments of a Fortran subroutine or function (see next sec-
tion) should be declared using a declaration statement in the DECLARATIONS
section of the program.

The declaration allows the translator to determine which of the actual arguments
in the call(s) are defined in the subroutine and which ones are merely used. This

is important for determining the order of the calculations?.

In FST 3, the string constant STRING is introduced as an input argument type,
in addition to integer, real scalar, and real array input. Only string constants
are allowed, e.g. ’For calculating A’. String expressions or string variables are
not allowed in FST. String arguments allow subprograms to generate meaningful
messages if something goes wrong. An example is given in the next section 9.4.

9.4 User defined functions

User-defined functions are treated in the same way as subroutines. Function calls
can be written directly in calculation statements, which may lead to more elegant
programs than the use of subroutines in combination with intermediate variables.
Limitations, however, are that functions must return a single precision, scalar, real
variable and that all function arguments must be input arguments.

An example is the declaration of a function MichaelisMenten in the following way:

| example of the use of lowercase variable names
DECLARATIONS
DEFINE_FUNCTION MichaelisMenten (STRING, INPUT, INPUT, INPUT)
MODEL
Xloss = MichaelisMenten (’Reaction 1’, Vmaxl, K1, X) + ...
MichaelisMenten (’Reaction 2’, Vmax2, K2, X)

END

2In the generated Fortran (not in FST), a variable must be defined before it can be used.

Chapter 9. Other changes

The DEFINE_FUNCTION statement declares four input arguments, a string con-
stant and three real values, variables or function calls. In the calls to Michaelis-
Menten you see that the real arguments are the Vmax, the “half rate concentra-
tion” K and the substrate concentration X. Note that the same Michaelis-Menten
expression (in the actual Fortran function) is used for two different reactions.

The string constant in the calls can be used by the function itself for meaningful
messages in case there is something wrong. In case of negative concentrations X,
for instance, the function might force the program to stop, but without further
information the user does not even know which function call and which concentra-
tion caused the problem. This is solved by including the string in an error message
written from the function.

9.5 Appended Fortran subprograms

Fortran subroutines and functions can be appended to the FST model. In principle,
the translator copies them to the generated Fortran file and leaves it to the compiler
to check the Fortran code. However, the appended Fortran must be either in free
source form or in fixed source form (Metcalf et al., 2004; Chapman, 2008). A
mixture of the two is not allowed and would not make sense since Fortran compilers
do not like a mixed form file either.

This implies that the translator has to decide in which of the two forms the Fortran
code was written. The translator may fail to do this properly, unless the FST user
knows the rules of the game. So what are the rules?

e The Fortran source form is determined using the first non-empty line after
the STOP statement.

e If this line begins with an exclamation mark ’!’ (at any position), the source
form is set to free. The line is considered as a Fortran-95 style comment
statement.

e If the line begins with a asterisk '*’, a ’c’ or a 'C’ at the first position, the
source form is set to fixed. The line is considered as a Fortran-77 style
comment statement.

e Otherwise, if the first character is at position 7 or later, the source form is
assumed to be fixed. If the position of the first character is in [1,6], the source
form is assumed to be free.

For the FST part of the model, the use of an asterisk or exclamation mark in
comment lines does not matter. After the STOP statement, however, you should
be aware of the difference.

Sometimes these simple rules may lead to a surprise, for instance, if your first
Fortran-95 subroutine happens to start at position 7, the source form is classified
as fixed. Problems are easily solved by adding a comment in the proper source
form, on top of the Fortran code.

Once the source form is determined, all statements, continuation lines and com-
ment statements should conform to either the fized or the free source form. If the
subprograms are in fixed source form, for instance, exclamation marks as com-
ment characters are not allowed. If your subprograms are in free source form, the
Fortran-77 method of statement continuation or the asterisk “*” at the beginning
of a comment line is not allowed.

9.5. Appended Fortran subprograms

Note that in the Fortran 95/2003 standard, the fixed source is an obsolescent feature
of the language, a candidate for deletion in future versions of the standard.

9.5.1 Number of subroutine and function arguments

The translator checks the number of arguments in SUBROUTINE and FUNC-
TION statements against the FST declaration of the subprogram. It does so by
finding the first words of non-comment statements. If the first word happens to be
SUBROUTINE or FUNCTION, the arguments are counted.

Note that this will not always work for functions, since functions may begin in
Fortran like “REAL FUNCTION MichaelisMenten”. In this case, the function
statement will not be found and the number of arguments will not be verified.
Verification is also impossible if the called Fortran programs are separately com-
piled and then linked with the model, or if they are part of a precompiled object
library. Hence, the user must always be aware of possible problems with the argu-
ment list of linked subprograms. Such problems usually lead to a runtime crash.
What is always verified, however, is the consistency between the DEFINE_CALL
or DEFINE_FUNCTION declaration in FST and the actual calls.

We further remark that FST does not support the use of keyword arguments or op-
tional arguments in subprogram calls®. This implies that Fortran-95 subprograms
requiring such a call cannot be used directly from FST. In such a situation the user
will have to write a trivial interface routine that translates the simple Fortran-77
style call from FST into the desired Fortran-95 call. The interface routine then con-
tains a USE statement for a Fortran-95 module or an explicit interface description
for the Fortran-95 subprogram.

9.5.2 What does the translator do with Fortran?

Fortran in free source form, is copied to the generated source file completely un-
changed. This implies that modern Fortran-95 modules can be appended to FST
code without any problem?.

Fortran in fixed source form, is converted to free source form by changing the
continuation and the comment lines. All other characteristics of the old Fortran-77
routines are left untouched like the use of numbers as statement labels. So what
you basically get, is free source form Fortran beginning at position 7.

The conversion is necessary since the model itself is generated by the translator in
free source form and compilers tend to complain about source form mixtures in the
same file.

The user is advised to replace the original Fortran by the converted Fortran copied
from Model.f90°. Alternatively, Michael Metcalf’s program® can be used for a more

3In Fortran 95 a subroutine SUB with a dummy argument A can be called using ’call
SUB(A=myvar)’, where 'myvar’ is the actual argument in the calling program. Keyword ar-
guments in calls are especially useful in case of optional arguments, which do not have to be there.
All this, however, requires the subroutine interface to be known at compile time in the calling pro-
gram, either through a USE statement or through an explicit interface declaration. Subprogram
calls from FST are Fortran-77 style calls without keyword arguments.

4But they cannot be called directly from FST, see section 9.5.1.

5A Fortran section beginning with a subroutine statement at position 7 may then be incor-
rectly classified as fixed form. This can be repaired by adding a comment line beginning with an
exclamation mark on top of the Fortran code.

6 Available from many websites, e.g. ftp.numerical.rl.ac.uk/pub/MandR,/convert.f90 or

88 Chapter 9. Other changes

complete conversion.

9.5.3 The Fixed/Free form

There is a source form which can be combined with both free and fixed source
form Fortran source files. This is the Fixed/Free source form (Metcalf et al., 2004;
Chapman, 2008) with continued lines coded with an ampersand (&) at position 73
and any character at position 6 of the continuation line. If your Fortran is in this
form, the addition of an exclamation mark comment line on top of the Fortran
section will cause the translator to switch to free form. It will otherwise complain
about a line length above 72.

The Fixed/Free source form may lead to error messages on continued SUBROU-
TINE or FUNCTION statements for which the translator attempts to determine
the number of arguments. In such a case, the fixed/free form continuation should
be removed from these statements. For other statements the Fixed/Free source
form should not be a problem.

9.6 Minor changes

A warning used to be given on the use of a scalar variable as an array argument
in a function or subroutine call. The warning told the user that the array length
appearing in the subroutine is 1. This situation has been changed into an error
condition since (1) In Fortran-95 there is a distinction between degenerate arrays’
and scalars, (2) Usually it was an error (a forgotten array declaration) and (3)
Arrays with length 1 can be declared if necessary.

The OUTPUT statement for generating matrix printer plots is no longer main-
tained. We do not test it anymore, it may not function properly and we intend
to completely remove it from the FST language. If there are users who cannot do
without, please let us know.

A few subprograms linked with the generated Fortran, have been moved from
the utility library TTUTIL to the drivers library. The moved subprograms are
TIMER2, INTGRL, INSW, FCNSW, LIMIT, LINT2 and CHKTSK. The files have
been converted to Fortran-90 free format and CHKTSK has been adapted to the
new event handling ITASK=5 section of FSE models.

Finally, numerous small improvements in the text of error messages and warnings
have been made.

http://www.nag.co.uk/nagware/Examples/convert.f90.
7A degenerate array is an array with length 1.

References

Bouman, B. A. M., Kropff, M. J., Tuong, T. P., Woperies, M. C. S., ten Berge, H.
F. M., van Laar, H. H., 2001. ORYZA2000: modeling lowland rice. Technical
report, International Rice Research Institute and Wageningen University and
Research Centre, Los Bafos (Philippines) and Wageningen. 235 pp.

Chapman, S. J., 2008. Fortran 95/2003 for scientists and engineers. MaxGraw-Hill,
New York.

Goudriaan, J., van Laar, H. H., 1994. Modelling potential crop growth pro-
cesses. Textbook with exercises. Current Issues in Production Ecology, Volume
2. Kluwer Academic Publishers, Dordrecht.

Metcalf, M., Reid, J., Cohen, M., 2004. Fortran 95/2003 explained. Oxford Uni-
versity Press, Oxford.

Rappoldt, C., van Kraalingen, D. W. G., 1996. The Fortran Simulation Translator
FST version 2.0. Technical report, DLO Research Inistitute for Agrobiology and
Soil fertility; The C.T.de Wit graduate school for Production Ecology, Wagenin-
gen, the Netherlands. Quantitative Approaches in Systems Analysis No. 5.

Yin, X., van Laar, H. H., 2005. Crop System Dynamics. Wageningen Academic
Publishers, Wageningen. 155 pp.

89

Appendices

91

APPENDIX A

Curve types

Figure A.1 shows the dashing pattern of the various curve types for two different
curve widths. Note that a scale factor of 0.60 was applied while including this
figure into this document.

curve 1, width 2.0 pt

________________ curve 2, width 2.0 pt

............................. curve 3, width 2.0 pt

___________ curve 4, width 2.0 pt

________ curve 5, width 2.0 pt

e curve 6, width 2.0 pt

- curve 7, width 2.0 pt

curve 1, width 4.0 pt

= em omm o omm o= = = CUNVE 2, width 4.0 pt

EEEEEEEEEEEEEE] curveS,Width4.0pt

— e - w—— CUINVE 4, width 4.0 pt

S — curve 5, width 4.0 pt

—n mmm w ommm o omem s CUIVE 6, width 4.0 pt

o n w ommm n onomm nnomm CUNVE 7, Width 4.0 pt

Figure A.1. Curve types for two different values of the curve width. Note that this figure
has been scaled with a factor 0.60 while including it into this document.

93

APPENDIX B

Marker types

Figure B.1 shows the various marker types for two different marker sizes. The used
colors are ”Blue” and "DeepPink” and ”ForestGreen” (cf. Appendix C). Note that
a scale factor of 0.60 was applied while including the figure into this document.

Marker 1, size 0.1 cm [] Marker 1, size 0.2 cm D Marker 1, size 0.3 cm
Marker 2, size 0.1 cm (O Marker 2, size 0.2 cm ::} Marker 2, size 0.3 cm
Marker 3, size 0.1 cm /\. Marker 3, size 0.2 cm ;\ Marker 3, size 0.3 cm
Marker 4, size 0.1 cm J,» Marker 4, size 0.2 cm J‘» Marker 4, size 0.3 cm
Marker 5, size 0.1 cm < Marker 5, size 0.2 cm >< Marker 5, size 0.3 cm
Marker 6, size 0.1 cm <> Marker 6, size 0.2 cm Q Marker 6, size 0.3 cm
Marker 7, size 0.1 cm B Marker 7, size 0.2 cm . Marker 7, size 0.3 cm
Marker 8, size 0.1 cm @® Marker 8, size 0.2 cm . Marker 8, size 0.3 cm
Marker 9, size 0.1 cm « Marker 9, size 0.2 cm . Marker 9, size 0.3 cm
Marker 10, size 0.1 cm Marker 10, size 0.2 cm v Marker 10, size 0.3 cm
Marker 11, size 0.1 cm [> Marker 11, size 0.2 cm [:> Marker 11, size 0.3 cm
Marker 12, size 0.1 cm A Marker 12, size 0.2 cm A Marker 12, size 0.3 cm
Marker 13, size 0.1 cm v Marker 13, size 0.2 cm v Marker 13, size 0.3 cm
Marker 14, size 0.1 cm } Marker 14, size 0.2 cm > Marker 14, size 0.3 cm
Marker 15, size 0.1 cm ’ Marker 15, size 0.2 cm ‘ Marker 15, size 0.3 cm

Figure B.1. Marker types at two sizes. Note that this figure has been scaled with a factor
0.60 while including it into this document. See the text for some remarks.

94

Appendix B. Marker types

95

Some remarks:

The unscaled size of the markers is about two times the value of the markersize
CURVE attribute MARSIZ.

Marker 9 always has an unscaled size of 1 mm. It does not react on MARSIZ
values.

There are filled markers with a solid color (e.g. markers 7 and 8) and open,
non-filled markers (e.g. markers 1,2 and 3). The open markers are not trans-
parent, but white.

The line width used to draw the open markers can be changed in PlotPref-
erences.dat, a file which is generated on the model directory by the FST
translator and which is not overwritten as long it is kept in place (cf. sec-
tion 5.3).

The line width used to draw the open markers does not depend on the size
of the markers.

APPENDIX C

Curve and Marker colors

Figure C.1 shows the possible curve and marker colors with their names. The use
of these names is not case sensitive.

[] wnite [] LawnGreen [Hotrin
e [Green I Deeppink
B s] LimeGreen B vioketRed
Bl vedumbie [] veliowGreen B vagenta
B RoyaiBiue B ForestGreen B rupe
B s [] velow Bl o
I DodgerBiue [] cou B a2
] Deepskysiue [] RosyBrown Bl cryso
] parkturquoise I indianRed B Gray40
[] Turquoise B sienna B crayso
] oyen B co I crayeo
Bl oaGreen [] orange [] crayro
B oaroivecreen I orangered [] arayso
[] springGreen B re [] crayeo

Figure C.1. Color names to be used in CURVE statements.

96

APPENDIX D

Time label strings

Time label strings are assigned to the TLABEL attribute of a CURVE. A time
label string controls how a calendar time axis looks like. The string is constructed
as follows

e A TLABEL string consists of a description of the axis type and a time label
in the form ”$ AzisType = TimeLabel $.

e The AwisType consists of 2 characters, immediately following the opening $-
sign. The first one is an ”I” for Interval or a ”L” for Label. This describes
the position of the time labels at either the centre of a time interval or at a
point in time.

e The second character selects the time interval to be used for subdividing the
axis: "H” for hours, ”D” for minutes, "W” for weeks, "M” for months and
”Y” for years.

e The text between the =-sign and the trailing $-sign defines the TimeLabel.
This definition makes use of certain standard strings which are replaced dur-
ing plotting by calendar time attributes, numbers or names describing the
calendar time. Other characters are just copied to each label.

e Table D.2 lists the possible calendar time attributes that can be used in the
time label definition.

In Table D.1 some example label strings are given with a typical result. TLABEL
strings are among the few things which are not thoroughly verified by the FST
translator. Incorrect strings may therefore lead to runtime errors after completion
of all model runs.

Table D.1. Examples of calendar time labels. Note that text which is not recognized as
a standard calendar time attribute (see the list in Table D.2) is simply copied to the label.
For instance a space, a hyphen, a comma or a word like ”week”.

time label typical result
#Hours:#Minutes: #Seconds 12:34:20

week #WeekNR, #Year week 21, 2010
#Wdag #Day-#MaandST-#Qyy | wo 19-feb-"11
#MaandLT # Year september 2008

97

98 Appendix D. Time label strings

Table D.2. Calendar time attributes which may be used in time label strings. The
codes all start with # and are replaced by the actual values for the calendar time label
or interval. In case of an interval its midpoint is used for deriving the values. The use of
these attributes is not case sensitive.

Attribute Meaning

#Year The year number, e.g. 2011

#Month The month number from 1 to 12

#Day The day in month between 1 and 31

#Hours The current hour between 0 and 23

#Minutes The minutes on the clock between 0 and 59

#Seconds The seconds on the clock between 0 and 59
#FSeconds | The fractional seconds, should be preceded by #Seconds
#MonthST | Short month name like Jan, Feb, Mar

#MonthLLT | Full month name like January, February, March
#MaandST | Short name in dutch like jan, feb, mar

#MaandLT | Full name in dutch, like januari, februari, maart
#WeekDay | Monday, Tuesday, Wednesday, ...

#WeekDag | maandag, dinsdag, woensdag, ...

#WeekNR | ISO 8601 week number

#Wday Short week day, like Mo, Tu, We, Th

#Wdag Short week day in dutch, ma, di, wo

#Qyy Year number with century replaced by a quote, like "11
#DOY Day of year between 1 and 365 (366 for a leap year)

Note that an interval axis requires a different type of label than a traditional point
label axis. It is useless, for instance to describe a week interval as the clocktime
12:00:00 at its centre. A week number, possibly in combination with a year number,
is a more meaningful choice. Some trial and error will usually be required for getting
an axis right.

APPENDIX E

FST version History

This version history contains additions and bug fixes, not in a particular order.

Version 4.16

e Bug resolved in driver subroutine MeasuredVariables which caused an error
for simulated times within 1 second from the time range of the data.

e Bug resolved in the treatment of the Sensitivity statement. Sensitivity runs
can now correctly be made on the variables controlling the cyclic use of mea-
sured data (CycleStYear, CycleStMonth, CycleStDay, CyclePeriodInDays).

e InTranslation_General mode: Default values for timer variables STTIME and
FINTIM, and for Translation_General variables StartYear and StartDOY as
derived from measured data, are written to file with higher accuracy, thus
preventing small timing errors.

e Command line options for the FST translator must be provided fully. A
string with just the first few characters of the option is no longer recognised.

e The options start with a hyphen ”-” on all platforms OSX, Windows and
Linux.

e Command FST 7 or FST -help returns the full list of options and describes
how the name of the model file can be given.

e Spaces in the FST filename are allowed. The filename must then be between
”double quotes”.

e The FST model file must have extension .fst.

e Bug resolved in the treatment of free format Fortran statements beginning
in column 1.

e For INTGRL statements with array arguments the warning on expansion in
a do-loop is suppressed.

e Warning on absent weather file no longer cut off at 80 characters.
e Warning on the generation of PlotPreferences.dat has been removed.

e Maximum number of plots (i.e. Frames) by means of CURVE statements is
now 40.

99

100 Appendix E. FST version History

e Maximum number of sorted sections is 50 and event-endevent sections is 47.

e List of forbidden subroutine names adapted. Subprograms inside a linked
Fortran module are visible in the generated model only if the linked module
is declared in a USE statement. Hence, names of subprograms inside modules
of linked libraries are no longer forbidden if these modules are not USE’d in
the actual model subroutine. For linked library modules being used, how-
ever, all contained public subprograms and public module variable names are
forbidden as names of called subprograms in FST.

e Call ActivateLicense for the EcoCurves plotting facilities has been added to
the generated Fortran source.

e New Sensitivity keyword IntVarying for sensitivity runs on INTEGER vari-
ables like StartYear. The range is still provided as real constants which are
used on a nearest integer basis. Number of runs may be omitted. In that
case all integer values in range are used.

e Fixed a bug preventing reruns on the name of a Measurements Datafile.

e StartDOY can now be outside [1.0,367.0]. In this case a sensitivity analysis
can be done on StartDOY covering a time interval of multiple years. Note
that StartDOY=0.0 means december,31 of the previous year (the year before
StartYear).

e Line length in res.dat has been increased.

e Fixed a bug resulting in Internal error message on cyclic use of measured
data.

e No output error message for models without CURVE or PRINT has been
omitted since models can produce output in subroutines.

e Fixed a bug in calendar use without a CURVE statement in Translation_General
mode.

e Fixed a bug by which a time event at FINTIM was executed twice.

e In Translation_General mode a PRDEL value of 0.0 now properly suppresses
periodic output.

e In Translation_General mode default values for STTIME, FINTIM, Start-
DOY and StartYear are derived from a Measurements Datafile. See the
chapter on Measured data for details.

Version 4.12

e Axis range and Firstlabel position in supplied Time_axis is no longer ne-
glected. Bugs in calendar axis plotting resolved.

e Improved PlotPreferences.dat file.

e Bug fixed. A left Parenthesis as the start of an expression in ZeroCondition,
FirstTime, NextTime and Finish statements is now properly recognized.

e Sensitivity statement added.

e Curve keyword FrameType added. FrameType=2 specifies a sensitivity plot
in which the results from all runs are combined. In case of one scalar (x,y)

Appendix E. FST version History 101

pair per run, the curve specification is applied to the curve formed by the
(x,y) results of all runs.

e New supplied calendar variables iWeek, iDOW and TimeEOW.

e Adaptations to TTUTIL 4.25. Routine OUTDAT for the generation of tabu-
lar output ("RES.DAT”) no longer uses a temporary file RES.BIN but stores
all values in memory.

e FST capacity settings increased to 500 array declarations, 2000 symbols,
4000 cross references, 200 state variables, 500 substatements, 500 NewValue
statements, 2000 actual subroutine/function arguments, 300 called subrou-
tines/functions, 1000 declared subroutine/function arguments.

e Inline comments added.

e EVENT names introduced. Runtime event messages to the logfile now include
the event name, which simplifies error search.

e EVENT section may be put in the INITIAL section in order to improve read-
ability of the program if, for instance, an initial SETTING variable changes
value in one or a few event sections.

e In the absence of terminal calculations, the calculations in event section(s)
were incorrectly sorted. Bug resolved.

e Global check on NewValue statements contained bug for programs without
state variables.

e An ARRAY _SIZE variable which is not used for declaring any arrays is no
longer an error, just a warning (the variable may be used as an integer con-
stant, which is legal now).

e CURVE, ASSIGN_AXIS, DEFINE_AXIS, MEASUREMENTS and
MEASURED statements added to the language.

e Improved synchronization between periodic output and the time event times.
Now, every time step the output times are checked for being an extremely
small (double precision) time step away from the nearest time event time.
In that case the output time is set equal to the time event time in order to
prevent unnecessary tiny steps. This applies to the GENERAL mode only
since FSE mode uses fixed interval time steps.

o A few FST WARNING texts have been corrected and shortened.
e Driver supplied variable RunNumber (in Translation_General mode only).

e Bug in FST/utility subroutine SearchBackOutsideString resolved. The bug
caused in rare cases program line breaks inside quoted strings.

e Added WARNING if a ZeroCondition does not depend on dynamically cal-
culated values. Useful especially if SETTINGs are used in event functions.
Explenation: A SETTING may change value in (other) events. The zero
crossing of an event function caused by changes of a SETTING, however, is
not detected as a state event, since the sign change happens momentarily at
event time, and not during an integration step.

e Incorrect driver name (RKDRIV) in event-related messages from EUDRIV
corrected.

102

Appendix E. FST version History

FatalERR. The TTUTIL routine FatalERR now uses the TTutilPrefs mod-

ule to look up the previously set error mode. FatalERR then behaves (1) as

the old default, (2) as a special error routine (displaying a message stored in

TTutilPrefs) or (3) writes the error also to an error file, e.g. "model_errors.txt”.
This means all three types of FatalERR are now combined into a single ttutil

subroutine. FST no longer needs to be linked with a TTUTIL library without

FatalERR.

Afbreken van lange regels zonder spaties, operators en haakjes (zoals een heel
lang call statement) ging niet goed omdat de zaak wordt afgehakt precies op
kolom 132. Dat is gecorrigeerd door de comma toe te voegen als toegelaten
character voor het afbreken.

TTUTIL improved speed of UPPERC and IFINDC.

Linear interpolation with AFGEN or CSPLIN has now been implemented in
Fortran with help of Module Interpolation in which function name and slopes
are buffered. As a result, interpolation calls are much faster now. LINT2 is
no longer used.

In GeneralDrivers the maximum number of state variables has been set at
50000 (state arrays A(N) count N times).

This document has been created in December 2021

The most recent version of this manual is available from
www.ecocurves.nl/Support/FST/FSTadditions.pdf

Part of the FSTwin installation is the FST translator which
is provided by EcoCurves BV "as is” and without warranties.
EcoCurves BV cannot accept any responsibility for errors leading
to incorrect simulation results.

FSTwin is compatible with the GFortran compiler and with
Ghostscript for viewing plots. The use of these third party pro-
grams requires that you comply with the terms and conditions for
obtaining a valid license. This is solely your responsibility and
the use of FST does not alter this in any way.

The FSTwin installation is accompanied by two separate in-
stallers, which can optionally be used to perform a standard in-
stallation of GFortran and/or Ghostscript. These are programs
under the GNU General Public License, however, and you must
comply with the terms and conditions of this license if you use
GFortran and /or Ghostscript in combination with FST. This also
applies if you use an existing installation of these programs or if
you download newer versions.

www.ecocurves.nl/Support/FST/FSTadditions.pdf

A
‘3*\ ally-
—— /‘||I’>

EcoCurves

	List of Figures
	List of Example programs
	List of Tables
	Preface
	Introduction
	Fortran compilers, Ghostscript
	Legal issues
	This manual

	For those who dislike manuals
	An example model in 39 statements
	Parameters and simulated time
	Sensitivity analysis
	Constants and initial calculations

	Text of example model
	Dynamic calculations
	"Measuring" the amplitude
	Plotting the result

	Some thoughts about this model
	About SENSITIVITY runs
	About EVENT sections
	About ''measuring'' the simulated amplitude
	About the CURVE statements
	About the model itself: Resonance

	Sensitivity runs
	The sensitivity statement
	Sensitivity plots

	Time and state events
	What for are Setting variables?
	Defining Setting variables
	Events step by step
	Time event
	State event

	Example model with Sensitivity and two Events
	Event sections: the rules
	Reaching a state event
	General mode
	FSE mode
	Scaling the event function
	Missed state events

	Simultaneous events

	Plotting in FST
	Why plotting in FST?
	Plotting course by example
	A quick plot
	More detailed CURVE statements
	A shared axis
	Two separate axes
	A second plot
	Reruns and plotting
	A warning

	Combining runs in a sensitivity plot
	More on sensitivity plots
	Changing the time axis
	Plotting calendar time
	Calendar connection
	Default calendar time axis
	Changing the calendar time axis
	Tuning the hour, day, week, month or year axis
	Some more examples

	Plotting simulated time

	How it works
	Overview
	The CURVE statement
	User defined axes
	Which data is actually plotted?
	The rule
	Events
	Example
	Exceptions to the rule

	Calendar time
	Another calendar time axis example

	Plotting array variables
	Technical details
	Processing EPS files
	Removing date, model name and FST version ''by hand''
	Limitations

	The plotting style file
	Plot size
	Thin lines at label positions
	Plot title and legend
	Footer

	Calendar connection
	Introduction
	Connecting the calendar
	Calendar connection with WEATHER
	The available calendar variables
	Referring to StartYear, StartDOY and OneDay

	Measured variables
	Introduction
	Example model with measured data
	The input file
	Getting the measured variables
	Example from practice

	Other changes
	Syntax
	New intrinsic functions
	The intrinsic function SimulationTime
	The intrinsic functions SUM and DOT_PRODUCT
	Other new intrinsic functions

	String arguments of subroutines and functions
	User defined functions
	Appended Fortran subprograms
	Number of subroutine and function arguments
	What does the translator do with Fortran?
	The Fixed/Free form

	Minor changes

	Bibliography
	Appendix Curve types
	Appendix Marker types
	Appendix Curve and Marker colors
	Appendix Time label strings
	Appendix FST version History

